

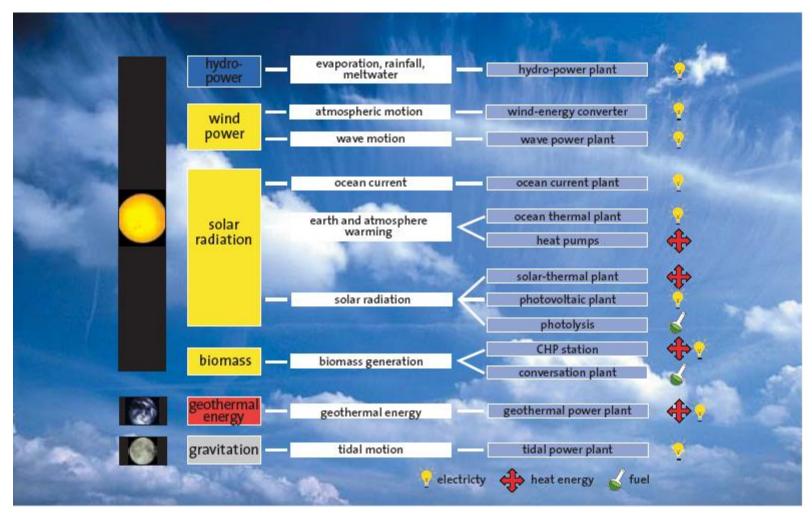
Conventional and Modern Forms of Energy Production

Content

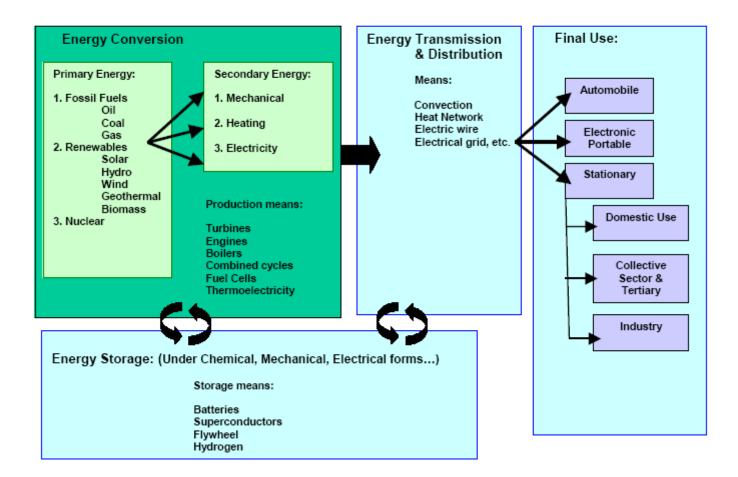
	Slides
Energy Production General	4-32
Energy Sources, Fossile Fuels	33-39
Coal	40-47
Crude Oil, Natural Gas	48-60
Fuel Combustion	61-72
Power Plants	73-81
Nuclear Power Generation	82-95
Power Plants Thermodynamics	96-113
Renewable Energy Sources	114-131
Environmental Effects of Power Plants	132-137
Energy Storage	137-139

Energy sources are sometimes classified under headings such as **renewable**, traditional, modern, commercial and conventional. The terminology is rather ambiguous, since it depends very much on the context. For example, wind energy is clearly renewable, but is it traditional? Windmills have been used for several centuries, making it traditional, but wind has been used to generate electricity only in this century, so perhaps it is modern. In different areas of a country a source may be classified differently. For example, fuel wood in rural areas is often non-commercial, whereas in towns it generally has to be bought.

Renewable means that a source is not depleted by use – wind is always renewable, while biomass can be renewable if regrowth is matched by consumption. Fossil fuels are nonrenewable, as they will eventually be depleted (i.e. run out) as there is no viable way to produce more of them. Another classification, **new and renewable**, covers all the renewable forms of energy plus ocean and geothermal. Some energy analysts also include nuclear energy in this category, though clearly not because it is renewable.


Whether an energy resource is **traditional** or **non-traditional** depends very much on the user's perspective. Many biomass users would be regarded as using a traditional source (that is, what they have always used) and they would regard using fossil fuels as non-traditional. However, it can be the conversion technology rather than the resource which determines the classification. Wood can be regarded as a traditional energy resource, but if it is used in a gasifier it produces a non-traditional energy source. Similar difficulties arise when categorising energy sources as **conventional** and **non-conventional**.

Commercial energy refers to those energy sources for which have to be paid for. This always includes the fossil fuels and some new and renewable sources. Biomass is usually classified as **non-commercial** – however, this depends again on where you are in the world. Table demonstrates that a fuel can be placed in more than one category and that there are no hard and fast rules. Classification depends on circumstances, and an energy analyst should be prepared to exercise some flexibility and make clear what fuel classification is being used.


		Familiarity		Reprod	ucibility	Monet	isation
Resource	Conventional	Traditional	Non-	Renewable	Non-	Commercial	Non-
			Conventional		Renewable		Commercial
Large scale hydropower	•			•		•	
Coal	•				•	•	
Oil and gas	•				•	•	
Nuclear	•				•	•	
Fuelwood		•	•	•		•	•
Agricultural residue		•	•	•			•
Animal dung		•	•	•		•	•
Animal labour	•	•		•		•	•
Industrial waste		•	•		•	•	
Solar thermal		•	•	•		•	•
Solar photovoltaic			•	•		•	
Wind		•	•	•		•	•
Small-scale hydropower		•	•	•		•	•
Biogas			•	•		•	

Energy supply terminology by different classifications

Energy sources

Energy ssytem ENERGY SOURCES

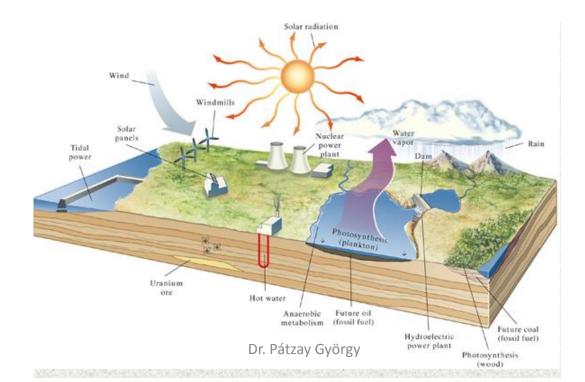
Energy Sources

• Primary Energy sources-

- Fossil fuels (oil, natural gas, coal)
- Nuclear energy
- Falling water, geothermal, solar
- Secondary Energy sources-
 - Sources derived from a primary source like...
 - Electricity
 - Gasoline
 - Alcohol fuels (gasohol)

Relation Type	Formula
Work as force times distance	$W = F \cdot d$
Kinetic Energy	K.E. = $\frac{1}{2}mv^2$
(Grav.) Potential Energy	E = mgh
Heat Content	$\Delta E = c_{\rm p} m \Delta T$
Power	$P = \Delta E / \Delta t$
Mass-energy	$E = mc^2$
Radiative Flux	$F = \sigma T^4$

SI units for energy


- The SI unit of energy is a Joule: $1 \text{ kg}^{*}\text{m}^{2}/\text{s}^{2} = 1$ Newton*m (Newton is the unit of Force)
 - mass * velocity ²
 - mass * g * height (on earth, $g = 9.81 \text{ m/s}^2$)
 - for an ideal gas = $c_v k_B T$ ($c_v = 3/2$ for a monatomic gas)
- **Power** is energy per time: 1 Watt = 1 Joule/s = $1 \text{ kg} \cdot \text{m}^2/\text{s}^3$
 - most commonly used in electricity, but also for vehicles in horsepower (acceleration time)

Other units for energy

Energy conversion			
Unit	Quantity	to	Note
1 calorie =	4.1868000	Joule	
1 kiloWatt hour = kWh =	3600000	Joule	A power of 1 kW for a duration of 1 hour.
1 British Thermal Unit = btu	1055.06	Joule	It is a is a unit of energy used in North America.
1 ton oil equivalent = 1 toe	4.19E+010	Joule	It is the rounded-off amount of energy that would be produced by burning one <u>metric ton</u> of <u>crude oil</u> .
1 ton coal equivalent	2.93E+10	Joule	
1 ton oil equivalent = 1 toe	1 / 7.33	Barrel of oil	or 1 / 7.1 or 1 / 7.4
1 cubic meter of natural gas	3.70E+07	Joule	or roughly 1000 btu/ft3
1000 Watts for one year	3.16E+010	Joule	for the 2000 Watt society
1000 Watts for one year	8.77E+006	kWh	for the 2000 Watt society
1 horsepower	7.46E+002	Watts	

Energy is Conserved

- Conservation of Energy is different from Energy Conservation, the latter being about using energy wisely
- Conservation of Energy means energy is neither created nor destroyed. The amount of energy in the Universe is <u>constant</u>!!
- Don't we *create* energy at a power plant?
 - No, we simply *transform* energy at our power plants
- Doesn't the sun *create* energy?
 - Nope-it exchanges mass for energy
- Though the total energy of a system is constant, the *form* of the energy can change

Energy sources and properties

- Potential
- Kinetic
- Gravitational
- Elastic strain
- Electrochemical
- Electrostatic
- Electromagnetic
- Nuclear fission and fusion
- Chemical
 - Stored in chemical bonds
- Thermal
 - Sensible heat
 - Latent heat

Energy conversion

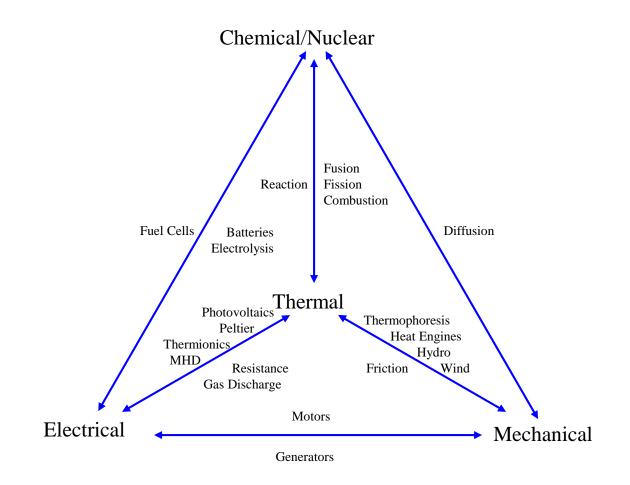
Laws of Thermodynamics provide limits
 Heat and work are not the same
 Maximum work output (or minimum work input) only occurs in idealized reversible processes
 All real processes are irreversible
 Losses always occur to the degrade the efficiency of energy conversion and reduce work/power producing potential

Energy conversion

Laws of Thermodynamics provide performance limits for reversible processes

- for heat to work/power conversion, e.g. Carnot
- for work to work conversion, e.g. zero current fuel cell operation
- Thermodynamics characterizes equilibrium and quasi-static processes but tells us nothing about rates
- Rates are governed by constitutive laws that link gradients and transport properties

Energy Flows and Balances


o Energy flow or transfer by

- sensible heat transfer by temperature gradients (conduction, convection, radiation)
- Iatent heat transfer via phase change
- mass transfer -- diffusive or convective
- momentum transfer KE-PE energy exchange
- chemical reaction enthalpy and free energy
- work transfer compressive, electrochemical, etc.

Energy balances

- overall conservation law
 - input output = accumulation
- boundary fluxes heat and work
- □ internal accumulation or depletion to *E*
- steady state versus transient processes –

Energy Transformations

Energy transformations are inherently inefficient

2nd Law of Thermodynamics

"Entropy always increases" "Heat flows from hot to cold"

For heat engines, limitation is Carnot efficiency: $\varepsilon = 1 - T_C / T_H$

For a turbine using 600 K steam, cooled by room temperature (300 K), the limiting efficiency of the turbine is $\epsilon = (600 - 300) / 600 = 50\%$

In fuel-fired electricity production half the input energy is inevitably lost

Conversions	Energies	Efficiencies
Large electricity generators	$M \rightarrow c$	98-99
Large power-plant boilers	$c \to t$	90-98
Large electric motors	$\mathbf{c} \to \mathbf{m}$	90-97
Best home natural-gas furnaces	$c \rightarrow t$.	90-96
Dry-cell batteries	$\mathbf{c} \rightarrow \mathbf{c}$	85-95
Human lactation	$\mathbf{c} \rightarrow \mathbf{c}$	85-95
Overshot waterwheels	$\boldsymbol{m} \to \boldsymbol{m}$	60-85
Small electric motors	$\mathbf{c} \to \mathbf{m}$	60-75
Large steam turbines	$t \rightarrow m$	40-45
Improved wood stoves	$c \to t$	25-45
Large gas turbines	$c \to m$	35-40
Diesel engines	$\mathbf{c} \to \mathbf{m}$	30-35
Mammalian postnatal growth	$\mathbf{c} \rightarrow \mathbf{c}$	30-35
Best photovoltaic cells	$\mathbf{r} \rightarrow \mathbf{c}$	20-30
Best large steam engines	$c \rightarrow m$	20-25
Internal combustion engines	$c \rightarrow m$	15-25
High-pressure sodium lamps	$\mathbf{c} \to \mathbf{r}$	15-20
Mammalian muscles	$c \to m$	15-20
Traditional stoves	$c \to t$	10-15
Fluorescent lights	$\mathbf{c} \to \mathbf{r}$	10-12
Steam locomotives	$\boldsymbol{c} \to \boldsymbol{m}$	3-6
Peak crop photosynthesis	$r \rightarrow c$	4-5
Incandescent light bulbs	$\mathbf{c} \rightarrow \mathbf{r}$	2-5
Paraffin candles	$c \to r$	1-2
Most productive ecosystems	$\mathbf{r} \rightarrow \mathbf{c}$	1-2
Global photosynthetic mean	$r \rightarrow c$	0.3

From V. Smil, "Energies", 1999

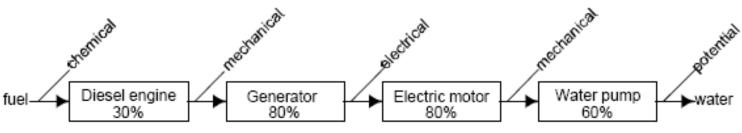
Typical conversion efficiencies of different energy conversion technologies

converter	form of	form of	typical
	input energy	output energy	efficiency
petrol engine	chemical	mechanical	20-25 %
diesel engine	chemical	mechanical	30-45 %
electric motor	electrical	mechanical	80-95 %
boiler and turbine	thermal	mechanical	7-40 %
hydraulic pump	mechanical	potential	40-80 %
hydro turbine	potential	mechanical	70-99 %
hydro turbine	kinetic	mechanical	30-70 %
generator	mechanical	electrical	80-95 %
battery	chemical	electrical	80-90 %
solar cell	light	electrical	8-15 %
solar collector	light	thermal	25-65 %
electric lamp	electrical	light	5 %
water pump	mechanical	potential	60 %
water heater	electrical	thermal	90-92 %
lpg stove	chemical	thermal	60-70 %
wood stove	chemical	thermal	12-30 %
charcoal stove	chemical	thermal	20-30 %
charcoal kiln	chemical	chemical	25-40 %

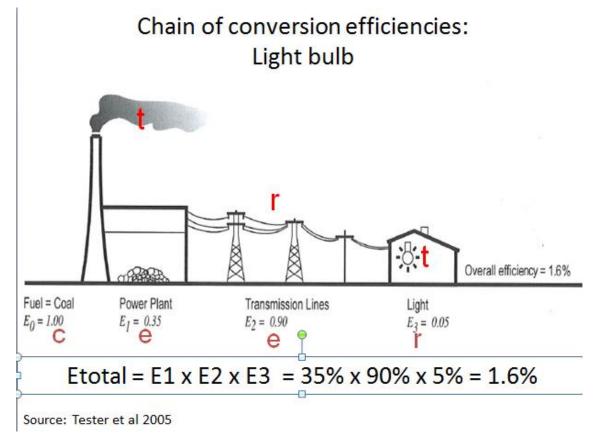
CONVERSION TECHNOLOGY	form of input energy	form of output energy	typical efficien
photosynthesis	solar radiation	chemical	3-6%
mammal metabolism	chemical	chemical	10.00%
charcoal kiln	chemical	chemical	25-40%
natural gas power plant (combined cycle)	thermal	electrical	58.00%
nuclear power plant (steam turbine)	thermal	electrical	30–36%
fossil fuel power plant (steam turbine)	thermal	electrical	30-48%
solar cell	solar radiation	electrical	8-15%
battery	chemical	electrical	80-90%
generator	mechanical	electrical	80-95%
electric lamp	electrical	light	5.00%
petrol engine	chemical	mechanical	20-25%
diesel engine	chemical	mechanical	30-45%
hydro turbine	kinetic	mechanical	30-70%
boiler and turbine	thermal	mechanical	7-40%
hydro turbine	potential	mechanical	70-99%
electric motor	electrical	mechanical	80-95%
water pump	mechanical	potential	60.00%
hydraulic pump	mechanical	potential	40-80%
electric stove	electrical	thermal	30.00%
wood stove	chemical	thermal	12-30%
charcoal stove	chemical	thermal	20-30%
solar collector Dr. Pátzav Gv	_{örgy} solar radiation	thermal	25-65%
lpg stove	chemical	thermal	60-70%

It takes energy to make energy.

(All fuel conversion processes lose energy.)


Process	Conversion Type	Efficiency
Dry Cell Battery	Chemical to Electrical	85-95%
Natural Gas to Compressed	Chemical to Chemical	85%
Crude Oil to Gasoline	Chemical to Chemical	79%
Natural Gas to H ₂	Chemical to Chemical	60%
Coal to Gasoline	Chemical to Chemical	50%
Grid Electric to H ₂	Chemical to Chemical	22%
Photo-Voltaic	Radiative to Electrical	15-25%
Soybean to Bio-Diesel	Chemical to Chemical	30%
Corn to Ethanol	Chemical to Chemical	5-10%
Plant Photosynthesis	Radiative to Chemical	4-5%

Not all processes have the same efficiency.


(Thermal engines are less efficient than electrical engines.)

Process	Conversion Type	<u>Efficiency</u>
Large Electric Generator	Mechanical to Electrical	98-99%
Large Electric Motor	Electrical to Mechanical	90-97%
Home Gas Furnace	Chemical to Thermal	90-96%
Small Electric Motor	Electrical to Mechanical	60-75%
Fuel Cell	Chemical to Electrical	50-60%
Large Steam Turbine	Thermal to Mechanical	40-45%
Diesel Engine	Thermal to Mechanical	30-35%
Gasoline Engine	Thermal to Mechanical	15-25%
Florescent Lights	Electrical to Radiative	15-25%
Incandescent Lights	Electrical to Radiative	2-5%
Incandescent Lights	Electrical to Radiative	2-5%

Efficiency of an energy conversion system

Overall system efficiency = 30% x 80% x 80% x 60% = 12%

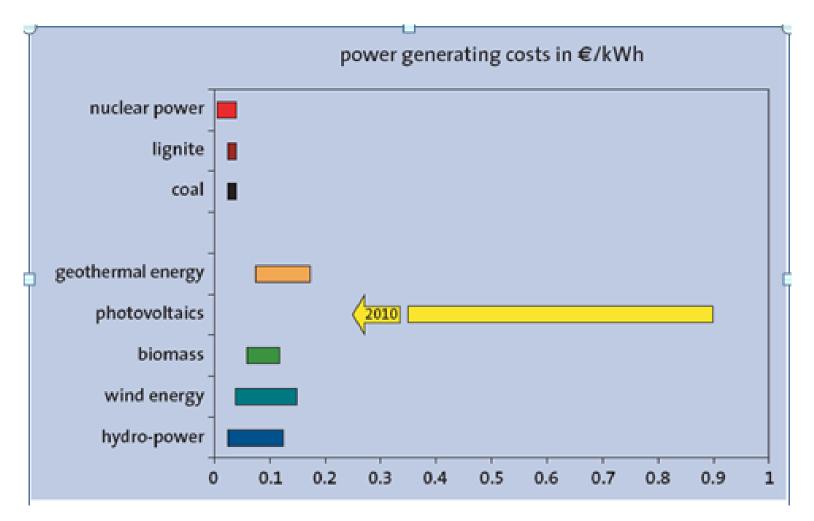
Energy sources

• The total efficiency is the product of all conversion efficiencies:

 $E_{total} = E_1 \ x \ E_2 \ x \ E_3 \ x \ E_4 \ x \ E_5 \ x \ E_6 \ x \ \dots$

- Total losses can be (and are) tremendous
- Most losses are in the form of radiated heat, heat exhaust
- But can also be non-edible biomass or non-work bodily functions (depending on final goal of energy)

Power densities


Fuel	Power density in kW/m ²
uranium (heat flow density at b element casing of a nuclear rea	
coal (heat flow density at stean generator tubes of a power stat	
hydro-electric (at v = 6 m/s)	108.0
tidal currents (average)	0.002
wave energy (wave height 1.5 n	n) 14.5
wind energy (at v = 6 m/s)	0.13
solar energy	> 1.37 (ø Germany 0.11)
geothermal energy (normal he	at flow) 0.00006

Typical power and energy quantities

- Power
 - Cell phone 1-3 W
 - Laptop 50 W
 - Basal human metabolism 80 W
 - Sprinter 1.6 kW
 - Microwave oven 300 W
 - Sunlight 1 kW/m² at noon on a clear day
 - Average home electricity use 1-2 kW
 - Car engine (100 hp) 75 kW
 - UC Davis electricity usage- 25 MW
 - 747 in flight- 65 MW
 - Large coal or nuclear power plant 1000 MW
 - Total US electricity 1 x 10⁶ MW
 - Total power of sun 2.8 x 10²⁰ MW

- Energy
 - AA battery (5 Wh) 18 kJ
 - Laptop battery 160 kJ
 - Big Mac 2.4 MJ
 - 1 kWh = 3.6 MJ
 - 1 kg coal 29 MJ
 - 1 kg H₂ 120 MJ
 - 1 gallon gasoline 120 MJ
 - 1 kg uranium 78,300,000 MJ
 - Hurricane 10⁹ MJ

Electricity generation costs

Area of different energy transformation technologies

Technology 1000 MWe area

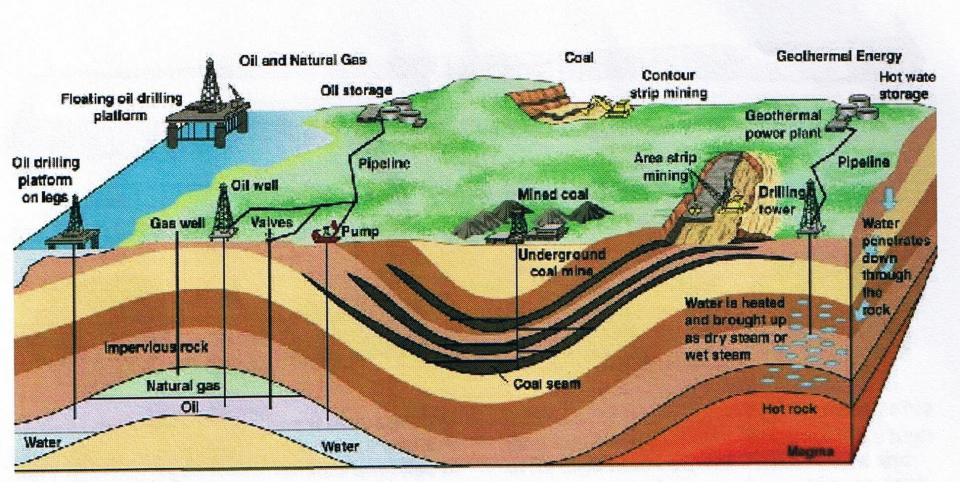
- •Nuclear $\cdot 8,8 \text{ km}^2$
 - •Coal •18,13-32,26 km²
 - •Water $\cdot 72,5 \text{ km}^2$
- •Photovoltaic •103,6 km²
 - •Wind $\cdot 259 \text{ km}^2$
 - •Biomass •2590 km²
 - •Geotermal •7,8 km²
- •Gas turbine/fuel cell •Case dependent

Area

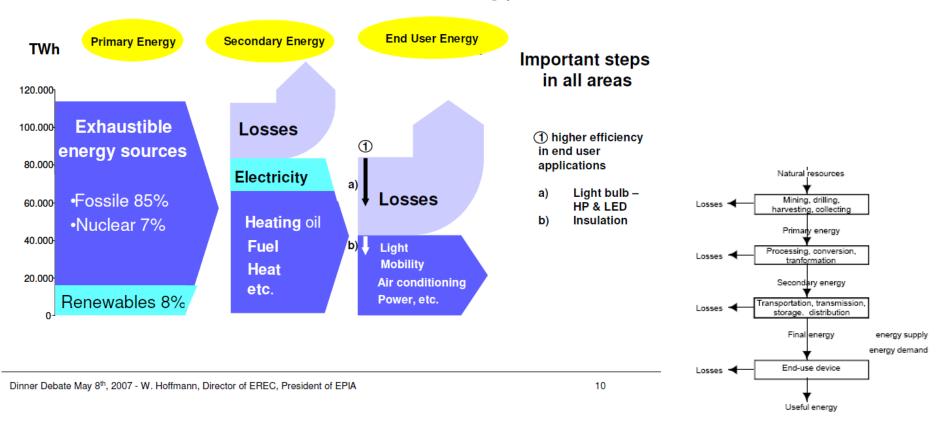
Technology	Specific power km²/GW	avaibility %	Specific energy Km²/GWh
Water	4000	30	13333
Biomass (direct fire)	4879	80	6098
wind	242	30	806,7
Solar – PV (flat plate)	50	20	250
Coal	96	70	137
solar – Thermal (parabolic trough)	22	34	65
Geotermal	34	90	38
Natural gas	15	40	37,5
Oil	7	30	23,3
Nuclear	12	90	13,3

Forrás: "Renewable Energy Technology Characterizations," DOE's Office of Utility Technologies, Energy Efficiency and Renewable Energy, and EPRI, 1997; "Generic Environmental Impact Statement for License Renewal of Nuclear Plants," NRC, 1996; "The Most Frequently Asked Questions About Wind Energy," American Wind Energy Association, 2002; "PV FAQ's," DOE, Energy Efficiency and Ren Dr. Pátzay György04; Capacity factors from Global Decisions/Energy Information Administration.

Energy consumption in the EU for the production of a number of products


product	resources	production volume	primary ene	rgy demand	energy intensity
		(ktonne)	. (PJ)	(% of total)	(GJ/tonne)
steel	ore, scrap	137,774	2635	5.7	19.1
aluminium	alumina	2,319	369	0.8	159.1
copper	ore, scrap	1,266	14	0.0	11.1
zinc	ore	1,719	67	0.1	39.0
alumina	bauxite	4,900	72	0.2	14.7
ammonia	fossil fuels	12,479	443	1.0	35.5
chlorine	salt	8,490	287	0.6	33.8
soda ash	salt	5,750	75	0.2	13.0
phosphor	ore	240	40	0.1	166.7
methanol	natural gas	2,000	34	0.1	17.0
oil products	crude oil	463,725	1421	3.1	3.1
petro-chemicals	HC feedstocks	27,734	2237	4.8	80.7
styrene	ethylene, benzene	3,000	27	0.1	9.0
VCM	ethylene, chlorine	4,360	36	0.1	8.3
poly-ethylene	ethylene	5,955	36	0.1	6.0
poly-propylene	propylene	2,440	29	0.1	11.9
PVC	VCM	3,930	23	0.1	5.9
cement	limestone	171,922	665	1.4	3.9
building bricks	clay	47,760	133.5	0.3	2.8
glass	sand, cullets	20,410	181.9	0.4	8.9
paper	pulp, waste paper	35,010	778.0	1.7	22.2

^{*}Calculated by dividing the total primary energy demand by the production volume of a product


Source: Potentials for improved use of industrial energy and materials - E. Worrell, 1994

Material	Specific energy"costs" (MJ/kg)	Raw material
aluminium	230-340	bauxite
brick	2-5	clay
cement	5-9	clay, limestone
copper	60-125	sulfide copper ore
glass	18-35	sand, clay
iron	20-25	ron ore
limestone	0,07-0,1	limestone
nickel	70-230	sulfide nickel ore
paper	25-50	Wood cellulose
polietilene	87-115	crude oil
polistyrol	62-108	crude oil
PVC	85-107	crude oil
sand	0,08-0,1	river bottom
silicium	200-250	silicium-dioxide
steel	20-50	pig iron
sulfuric acid	2-3	sulfur
titan	900-950	titan ore
water	0,001-0,01	Rivers, lakes, ground water
wood	3-7	forest

Energy sources overview

The energy chain

Chemical technology in energy production

Chemical energy $CH_4 + 2 O_2 = CO_2 + 2 H_2O$ Heat energy $HV: 5,55*10^4 \text{ kJ/kg}$ LHV: $4,99*10^4 \text{ kJ/kg}$ Nuclear energy $235 \qquad 236 \qquad 90 \qquad 143$ $_{92}U + n \rightarrow _{92}U^* \rightarrow _{36}Kr^* + _{56}Ba^* + 3n$

Energy by nuclear fission. 8,21*10¹⁰ kJ / kg 235 U

Chemical energy \rightarrow heat energy \rightarrow mechanical energy \rightarrow electric energy

Nuclear energy \rightarrow heat energy \rightarrow mechanical energy \rightarrow electric energy

Fossil fuels Elemental composition

Composition of all fossil fuels is variable.. but processing = driving off oxygen

Solid:

peat (60% C, 5% H, > 30% O *in mineral by weight*... + water) C:H:O ~ (1 : 1 : 0.4)

COal (lignite: lowest energy content sub-bituminous: ~60% C, 5% H, 25% O - looks like peat bituminous: ~80% C, 5% H, 12% O anthracite: > 90% C, < 4% H, < 2% O by weight

for bituminous: C:H:O ~ (1:0.8:0.1)

Liquid: crude oil - very little oxygen

C:H:O ~ (1 : 1 : 0.02)

Gas: natural gas ...mostly CH₄, i.e.
 C:H:O ~ (1:4:0)

refined petroleum C:H ~ 1 : 2 : 0... separate light hydrocarbons in processing

Fossil fuels Elemental composition, energy density

	C:H:O	Energy density (MJ/kg)
Dry biomass (or peat)	1:2:1	10-30
Coal	1:0.8:0.1	20-35
Crude oil	1:1:0.015	~42
Refined petroleum	1:2:0	44-47
Natural gas	1:4:0	50

Processing of fossil fuels in Earth drives off oxygen, lowers total energy content ... but tends to increase energy density in stuff that remains.

Fossil fuels

How are they transported?

Coal: Railroads. Typically little international sea transport at present (except for shipping from Australia to China)

Oil: Pipelines, ships (oil tankers)

Gas: Pipelines (gas phase), also ships (if compressed until it liquifies. "LNG" = liquified natural gas)

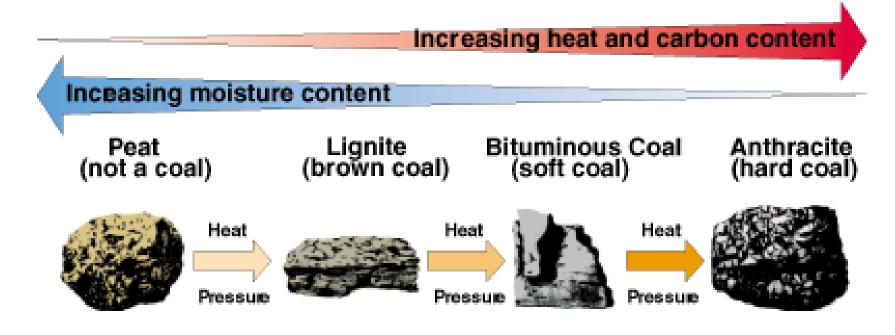
NIMBY issues with LNG: highly explosive, dangerous, no one wants an LNG terminal near them

FOSSIL/ORGANIC FUELS

COAL, OIL, NATURAL GAS. OIL SHALE, TAR SAND, PEAT. "BIOMASS" .. Young, "renewable".

- Formed due to the fossilization of *organic* matter, under ground (although evidence of earth mantel inorganic methane is rising).
- All formed of carbon and hydrogen, some with little oxygen, plus sulfur, mercury and other minerals, and non combustibles.
- Most require some form of processing: sulfur removal, grinding and washing, oil refining, gas desulfurization.

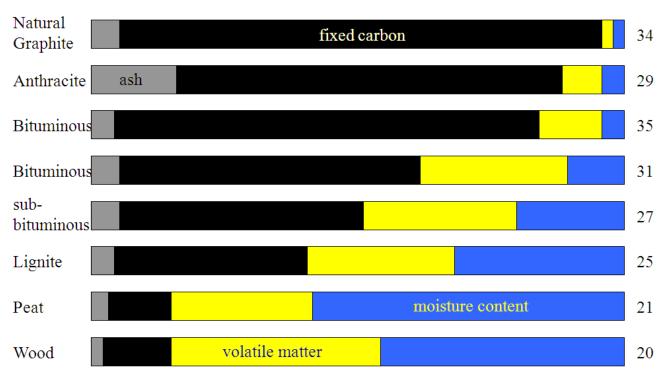
COAL


(fossilized vegetations) lignite, subbituminous, bituminous, anthracite.

- Coal is carbon + hydrogen (CH_m, m < 1) + sulfur (up to 10% by weight) + nitrogen + ash (non combustibles).
- Some sulfur can be washed away before combustion, but mostly is scrubbed from combustion products using limestone.
- In fluidized bed combustors, pulverized coal is mixed with limestone and burned at lower temperature in blowing air.
- In gasification, rich burning in oxygen and water forms syngas (CO+H₂), desulfurization before combustion or gas separation.

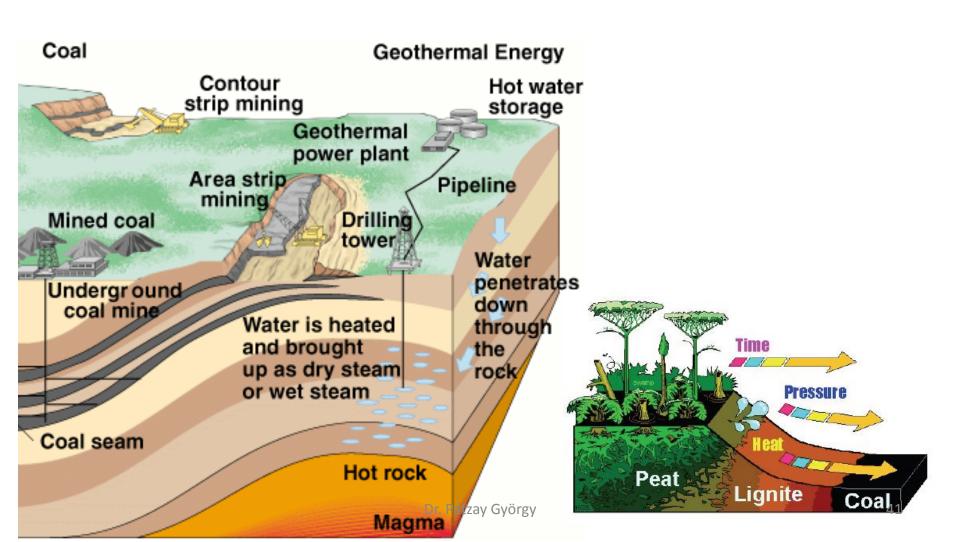
Coal

fossil fuel, from **swamp plants** of Carboniferous period (ending **286 million** years ago).


Stages of coal forming over millions of years

Fossil fuels Coal comes from plants Solid: coal anthracite bituminous sub-bituminous lignite Bituminous Coal Representation peat

Coal types and composition

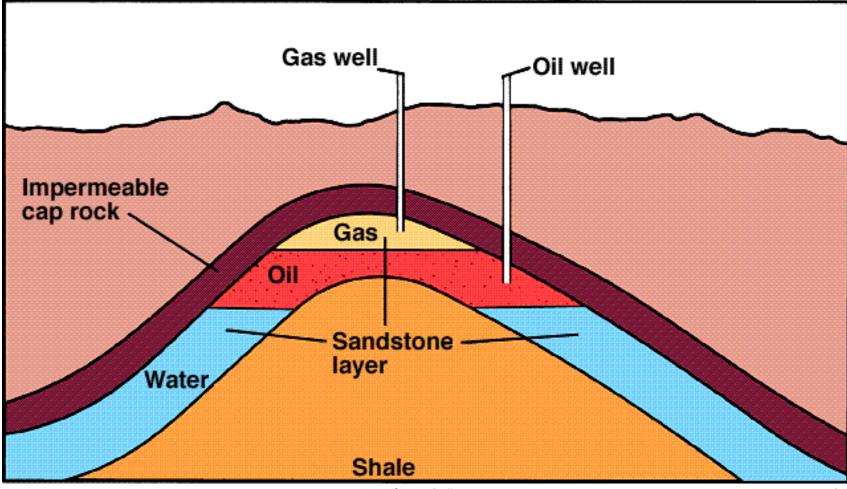


Ranks of Coal

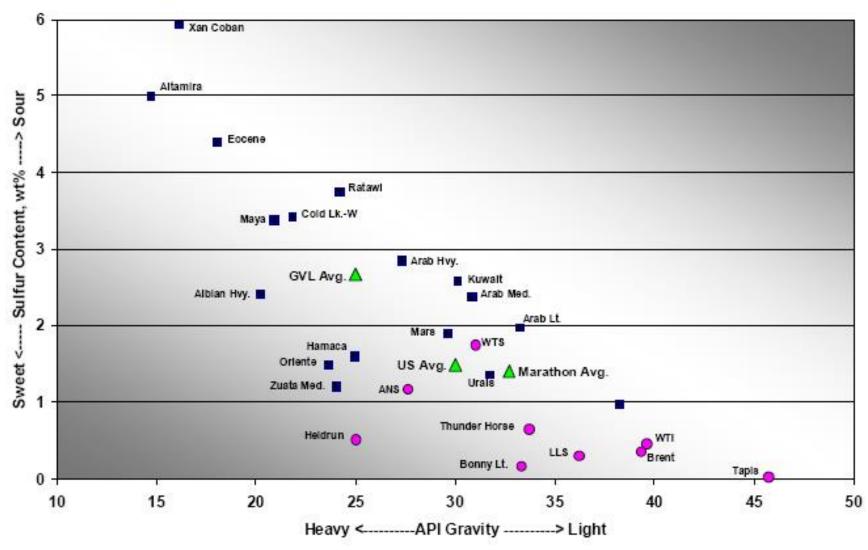
- <u>Lignite</u>: A brownish-black coal of low quality (i.e., low heat content per unit) with high inherent moisture and volatile matter. Energy content is lower 4000 BTU/lb.
 - <u>Subbituminous:</u> Black lignite, is dull black and generally contains 20 to 30 percent moisture Energy content is 8,300 BTU/lb.
 - <u>Bituminous</u>: most common coal is dense and black (often with well-defined bands of bright and dull material). Its moisture content usually is less than 20 percent. Energy content about 10,500 Btu / lb.
 - <u>Anthracite</u> : A hard, black lustrous coal, often referred to as hard coal, containing a high percentage of fixed carbon and a low percentage of volatile matter. Energy content of about 14,000 Btu/lb.

Extraction by Mining

Coal advantages and disadvantages


Pros

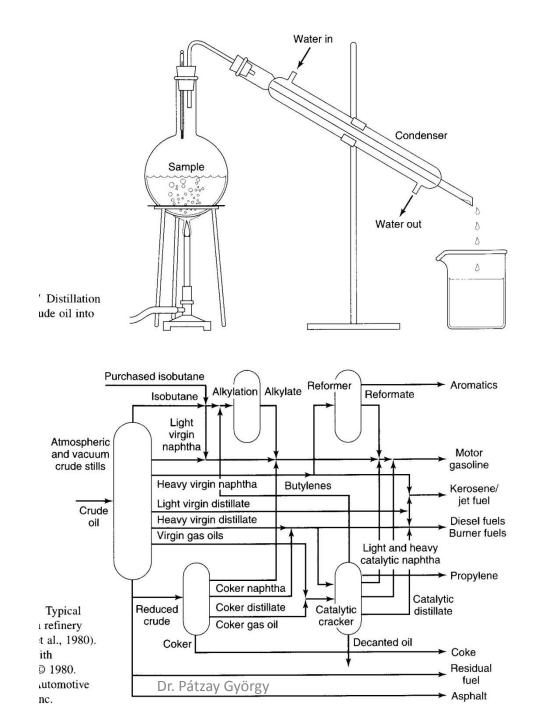
- Most abundant fossil fuel
- Major world reserves
- 120 yrs. at current consumption rates
- High net energy yield


Cons

- Dirtiest fuel, highest carbon dioxide
- Major environmental degradation
- Major threat to health

Crude Oil and Natural Gas Pool

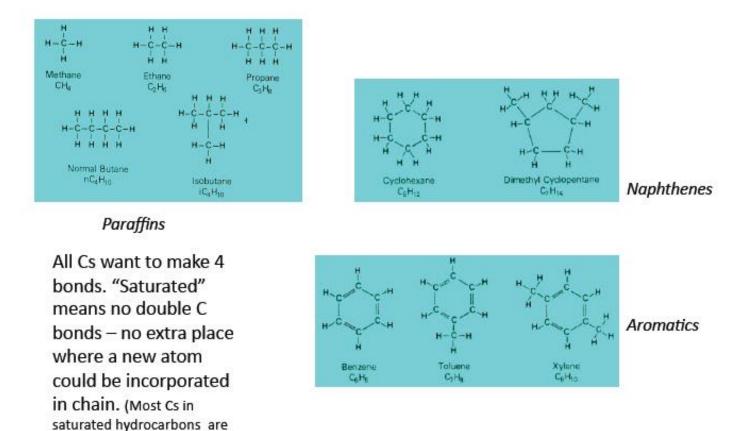
Dr. Pátzay György



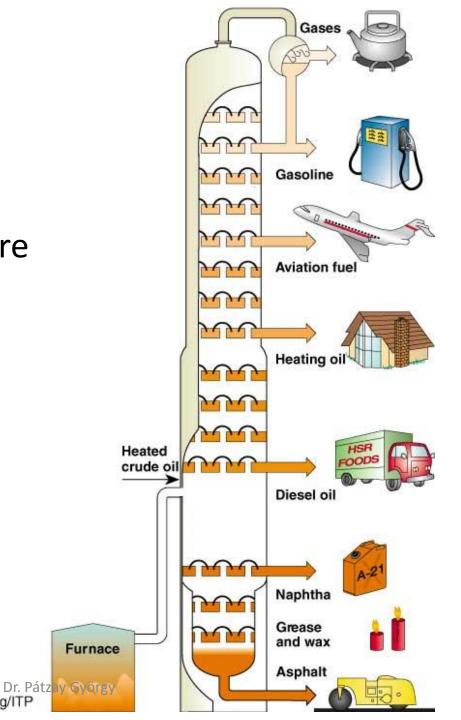
Crude Quality by Types

OIL

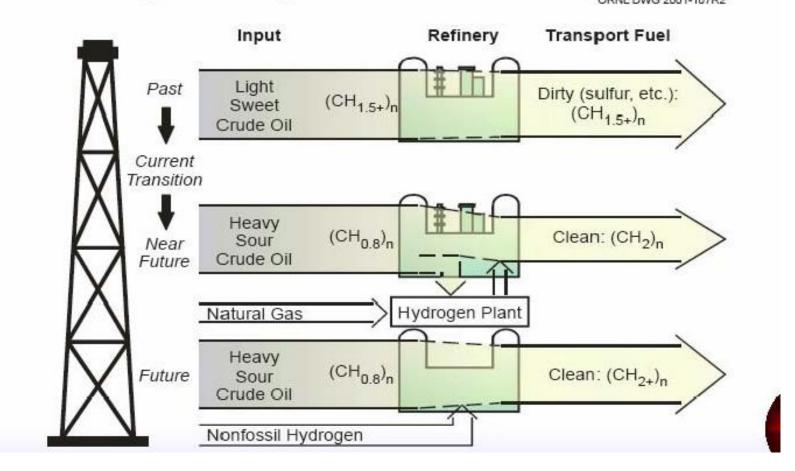
(or petroleum, liquid rock, fossilized marine life. algae)


- Made up of many organic compounds + hydrogen + nitrogen + sulfur. Sweet and sour refer to the amount of sulfur. CH_m , $1 \le m \le 2$.
- "Light oil" is generally composed of three hydrocarbon families:
 - Saturated hydrocarbons: paraffins (or normal alkanes), C_nH_{2n+2}, with gas, n = 1-4, liquid, n = 5-15, and solids, n > 15.
 - Unsaturated hydrocarbons, or aromatics, like benzene, C₆H₆, toluene, C₇H₈ and nephthalene, C₁₀H₈.
 - Resin and asphaltenes, heavier hydrocarbons rich in nitrogen, oxygen, sulfur and vanadium.
- Refining: distillation (separation of lighter components), catalytic cracking (heating) and reforming (with steam or hydrogen). Products are typically refinery gas, LPG, gasoline (mostly octane C₈H₁₈), aviation fuels (JPx) diesels, heating and lube oils

Molecular composition


linked to 2 Hs, 2 Cs).

Crude oil: also complex – a mixture of hydrocarbons C_nH_m of various lengths to > C_{70} (with some impurities, e.g. sulfur at S:C ~ .004-.02: 1)


Refining crude oil. Based on their boiling points, components are removed at various levels in distillation column.

© 2001 Brooks/Cole Publishing/ITP

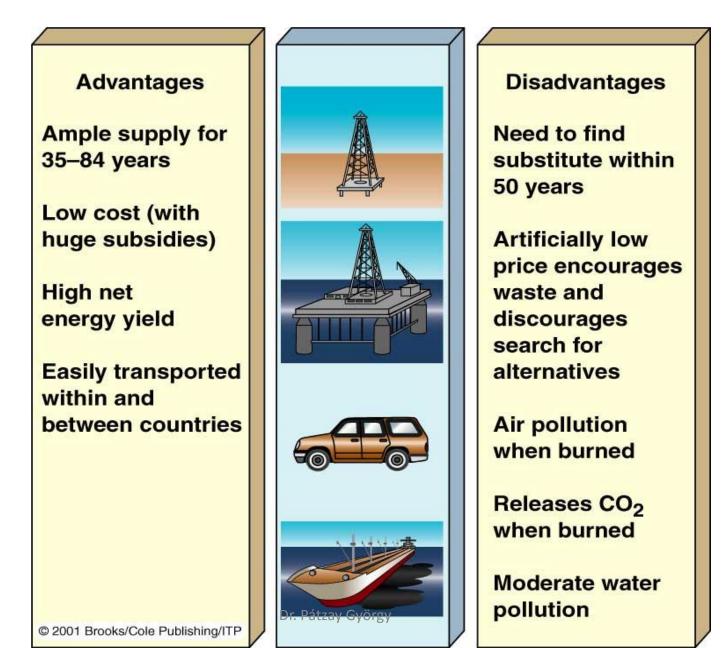
48

A Large Demand for Hydrogen is due to the Declining Quality of Available Crude Oil

Non-Conventional "Heavy" Oil (all require intensive processing)

Oil Shale:

impermeable hard rock containing (organic, non petroleum) kerogen (pre-oil), which pyrolyzes into oil + (organic, petroleum) bitumen that liquifies with heating.


Tar and Tar Sand:

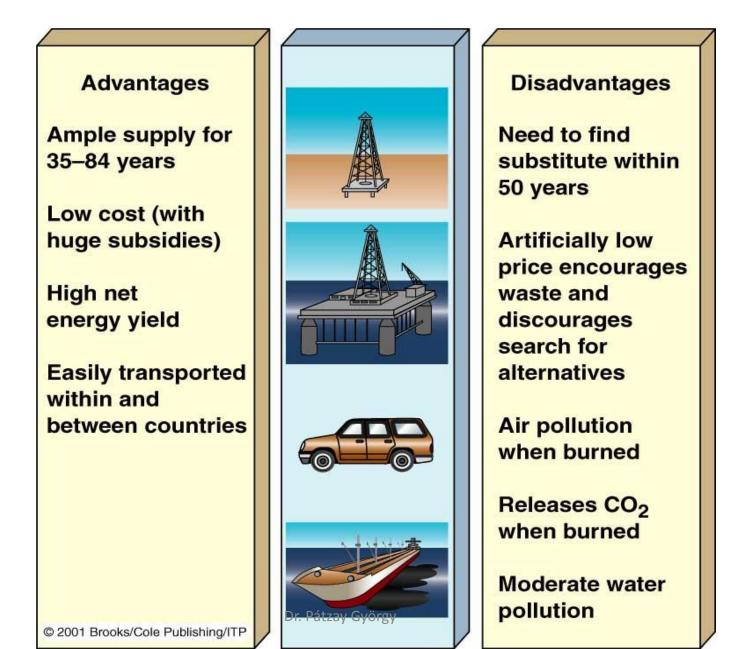
a mixture of sand and bitumen (coal-like) can be reformed into oil components.

Peat:

"Duff" material in forests and woodland ..

Advantages and disadvantages of using oil as an energy resource

NATURAL GAS


- Mostly methane, CH₄, ethane C₂H₆, some propane, C₃H₈, and little butane, C₄H₈, with small fractions of higher hydrocarbons, may contain sulfur, oxygen, CO₂ at small quantities.
- Requires least processing.
- Biogenic Gas: near surface, difficult to exploit.
- Methane hydrides/hydrates, found in deep oceans, and permafrost, encapsulated in water (estimated to exceed 2 orders of magnitude of proven gas reserves) in ice like structures.

Natural Gas

- fossil fuel;
- mixture of 50–90% methane (CH_4), smaller amounts of ethane (C_2H_6), propane (C_3H_8), & butane (C_4H_{10}), and hydrogen sulfide (H_2S);
- typically transported by pipelines;

Methane (CH_4) is a greenhouse gas!

Advantages and disadvantages of using oil as an energy resource

One way to classify fuels is through their heating value, In this table it is the *LHV*, in MJ/kg fuel.

Commercial Fuels

Natural gas	36-42
Gasoline	47.4
Kerosene	46.4
No. 2 oil	45.5
No. 6 oil	42.5
Anthracite coal	32-34
Bituminous coal	28-36
Subbituminous coal	20-25
Lignite	14-18

Biomass Fuels

Wood (fir)		21
Grain		14
Manure		13

Fuel combustion - Fuel Type

- Solid
 - Coal
 - $\eta_{\text{combustion}}$ = 89%
 - Wood
 - $\eta_{\text{combustion}}$ = 74%

- Liquid
 - Number 2 fuel oil
 - $\eta_{\text{combustion}}$ = 88%
 - Number 6 fuel oil
 - $\eta_{\text{combustion}}$ = 88%
- Gas
 - Natural gas
 - $\eta_{\text{combustion}}$ = 85%

Fuel combustion

Fuel combustion

- CH₄ + 3 O₂ = CO₂ + 2 H₂O natural gas
- C₈H₁₂ + 11O₂ = 8 CO₂ + 6 H₂O gasoline
- C₆H₁₂O₆ + 6O₂ = 6 CO₂ + 6 H₂O cellulosic biomass

Theoretical Air

- In a perfect world air and fuel would mix completely and complete combustion would occur
 - Each molecule of fuel would find exactly the correct amount of oxygen for the combustion reaction to take place
 - · This is referred to as stoichiometric combustion

$CH_4+2O_2 \rightarrow CO_2+2H_2O$ +EnergyRelease

- For most combustion processes air is used as the source for oxygen
 - Air contains approximately 79% nitrogen (N₂), which does not enter into the combustion reaction

Classic Boiler Efficiency

 For a steam generating unit, efficiency is defined as the heat absorbed by the steam divided by the energy input from the fuel, direct method

$$\eta_{\text{bottler}} = \frac{\text{energy desired}}{\text{energy that costs}} (100)$$

$$\eta_{\text{bottler}} = \frac{\dot{m}_{\text{steam}} (h_{\text{steam}} - h_{\text{footivester}})}{\dot{m}_{\text{fuel}} HHV_{\text{fuel}}} (100)$$

Excess Air

- · In reality there is insufficient
 - Reaction Time to allow the combustion to complete
 - Insufficient reaction $\underline{\mathcal{T}}\textsc{emperature}$ to drive the chemical reaction to completion
 - Insufficient mixing or <u>T</u>urbulence to allow the fuel and oxygen to react
- As a result more air than is theoretically required is added to the combustion process to insure all of the fuel has an opportunity to react
 - This excess air enters the combustion chamber at ambient temperature and is immediately heated to near the flame temperature
 - The air then passes across the heat exchange surfaces and gives up a portion of its energy to the boiling water
 - The excess air then exits the boiler at stack temperature
 - The net result is ambient air has been heated from, for example, 50°F to 550°F with no useable effects, this is a system loss.

Indirect Efficiency

- Boiler efficiency can also be determined in an indirect manner
 - By determining the magnitude of the losses
 - The primary losses are typically
 - Shell loss
 - Blowdown loss
 - Stack loss

$$\eta_{indirect} = 100\% - \sum_{losses} \lambda_i$$

 $\eta_{indirect} = 100\% - \lambda_{shell} - \lambda_{blowdown} - \lambda_{stack} - \lambda_{misc}$

Excess Air

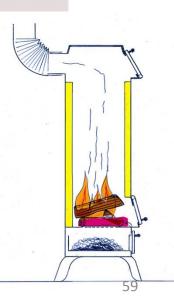
100% theoretical air (0% excess oxygen):

 $CH_4 + (1.0)_{2O_2} + (1.0)(2)(3.76)_{N_2} \rightarrow CO_2 + 2H_2O + (1.0)(2)(3.76)_{N_2}$

• 150% theoretical air (6.5% oxygen in the flue gas):

 $CH_4 + (1.5)_{2O_2} + (1.5)(2)(3.76)_{N_2} \rightarrow CO_2 + 2H_2O + (1.0)_{O_2} + (1.5)(2)(3.76)_{N_2}$

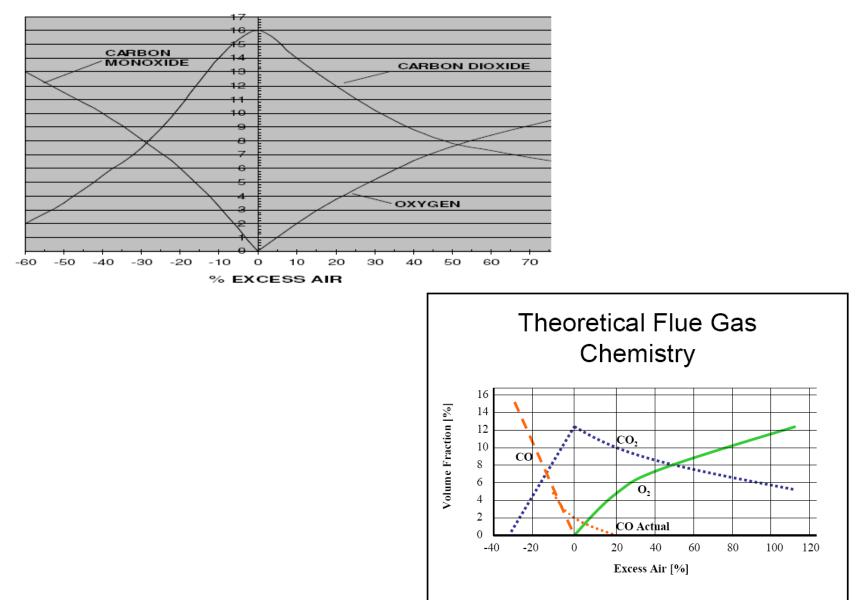
Fireing technology


Excess air calculation from measured data

From equations: $V_{`d} = V_{o`d} + (\lambda-1) L_{o}' \ , \label{eq:Vd}$ and

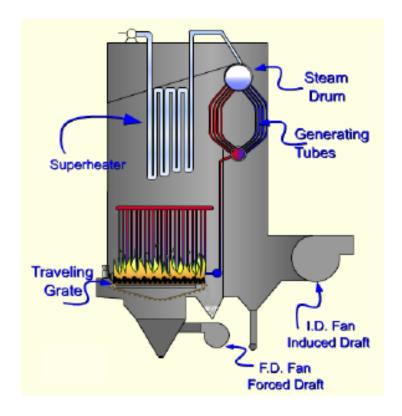
0.21 . (
$$\lambda$$
-1) Lo' = O_{2fluegas} . (V_{o'd} + (λ -1) . L_o')

taking into account that $V_{\mathsf{o}^{\mathsf{\prime}}\mathsf{d}} \approx L_{\mathsf{o}}'$ can get:


$$\lambda = \frac{21}{21 - O_{2 \, flue gas}}$$

Dr. Pátzay György

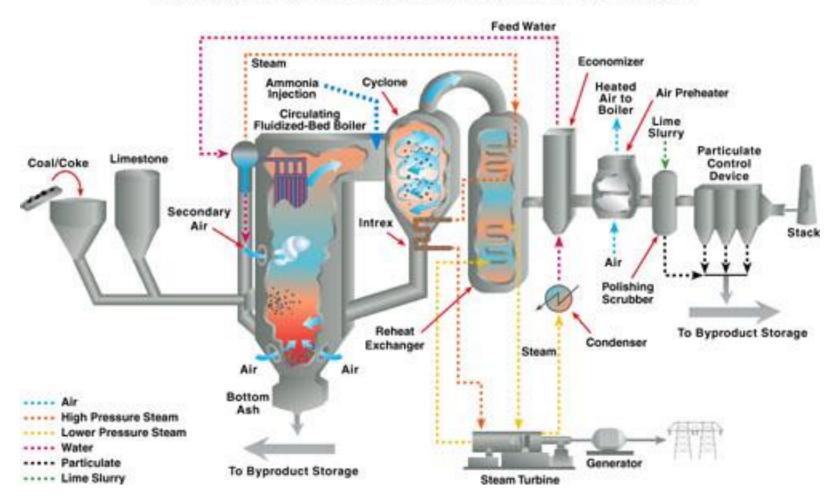
AIR:FUEL RATIO FLUE GAS ANALYSIS

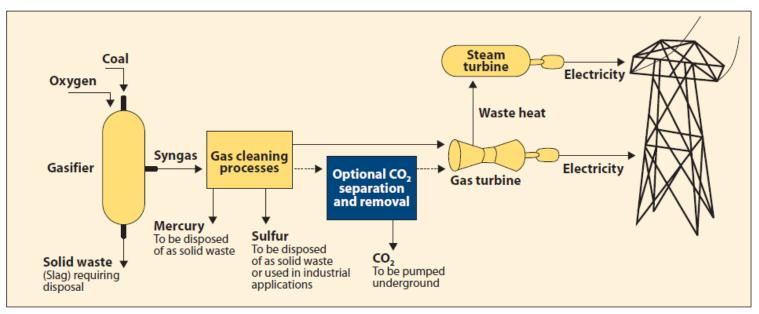


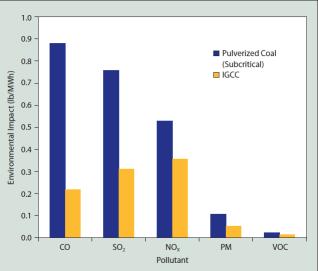
Determination of optimal excess air factor

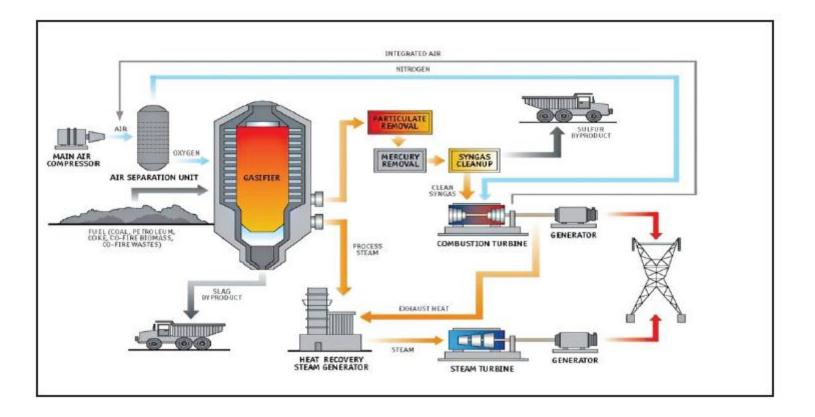
Depends on several conditions:

- Fuel type, combustion system, burner construction, pollutant emission limits, etc.
- Some usual values of the excess air factor :

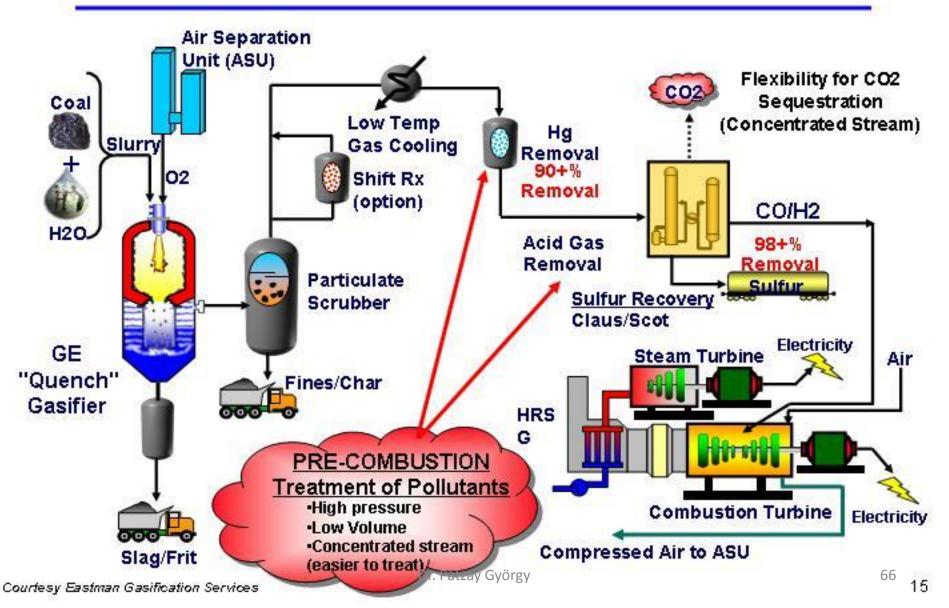

fuel	λ
gas	1.03 - 1.3
oil	1.1 - 1.4
coarse solid fuel	1.4 - 2.0
pulverized solid fuel Dr. Pátz	ay György 1.2 – 1.5 ₆₁

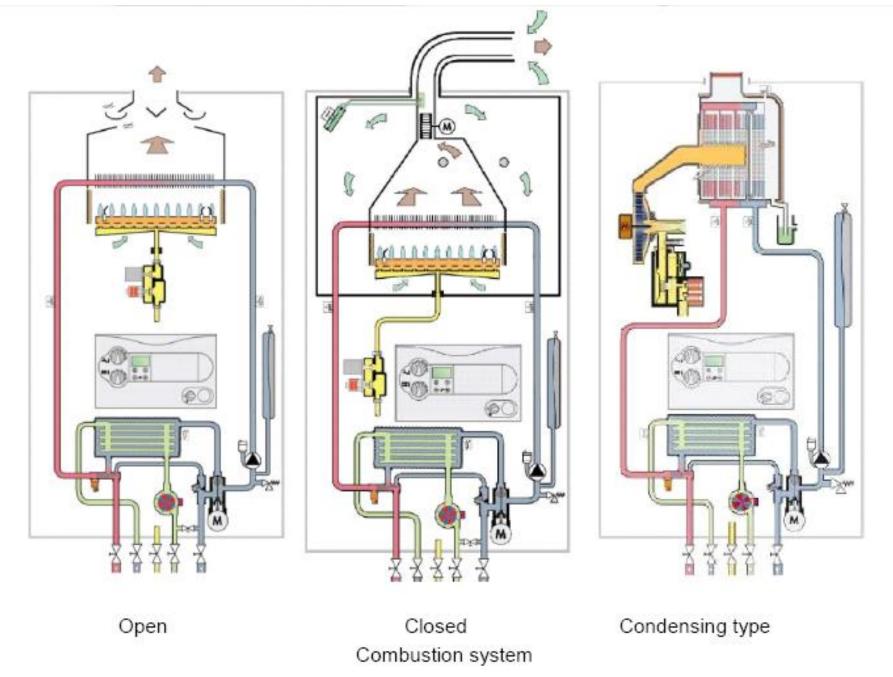

Travelling grate coal fireing


Fluid Bed Combustion

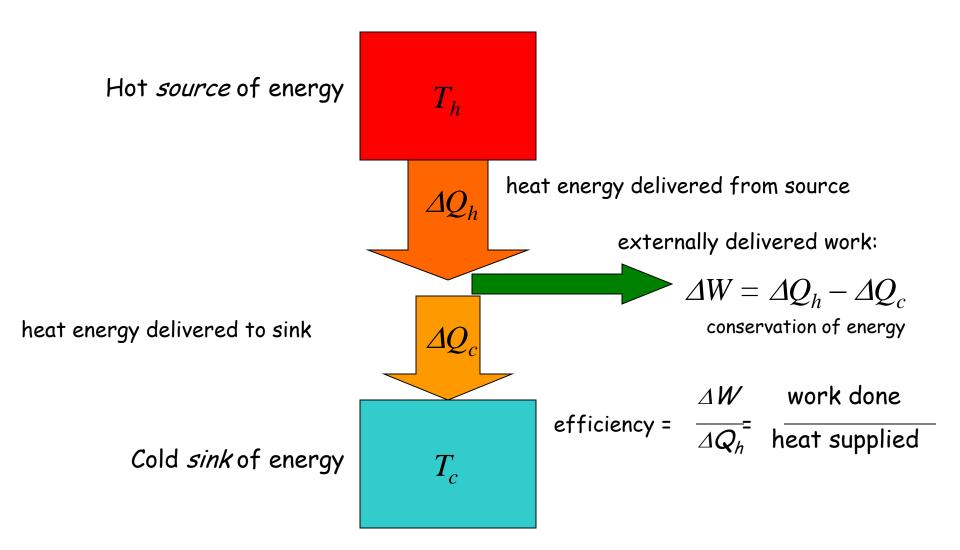

JEA Large-Scale CFB Combustion Demonstration Project

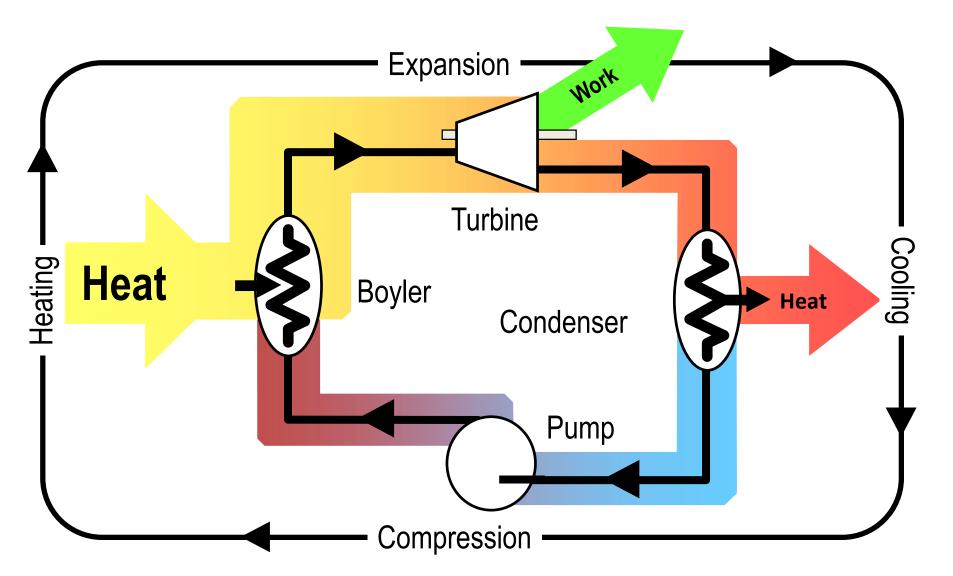
IGCC





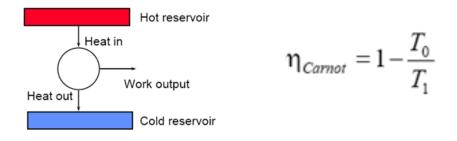
Simplified IGCC flow diagram


IGCC Overview



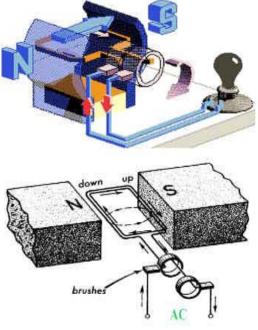
Dr. Pátzay György Examples for different combustion air supply

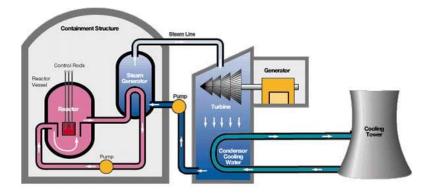
How much work can be extracted from heat?



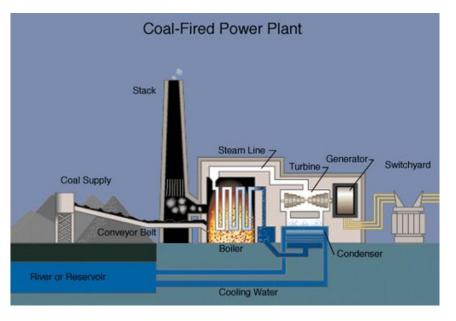
Power plant. . .

Carnot efficiency

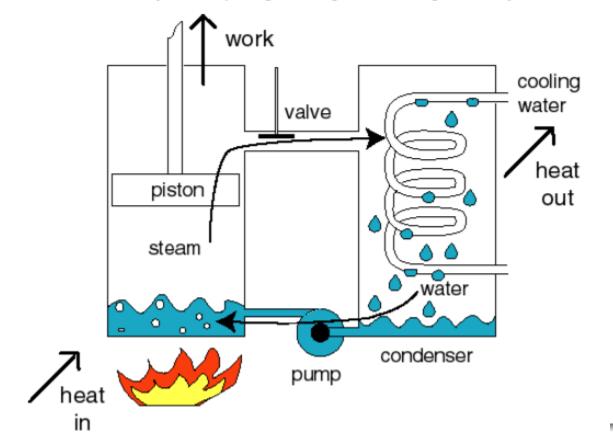

Power plant efficiency

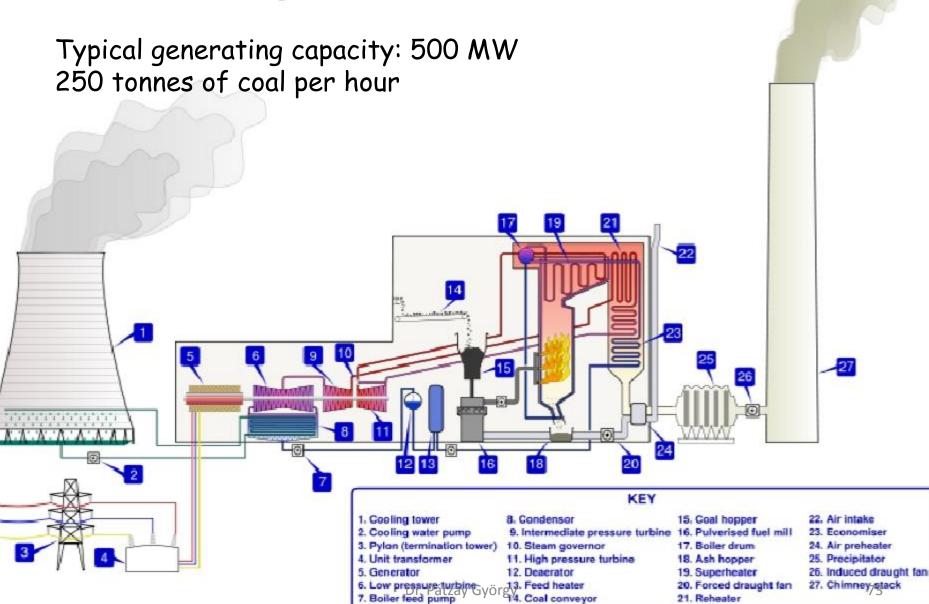

So the maximum efficiency is:

maximum efficiency = $\Delta W_{max} / \Delta Q_h = (1 - T_c / T_h) = (T_h - T_c) / T_h$ this and similar formulas must have the temperature in Kelvin So perfect efficiency is only possible if T_c is zero (in °K) In general, this is not true As $T_c \rightarrow T_h$, the efficiency drops to zero: no work can be extracted


A coal fire burning at 825 °K delivers heat energy to a reservoir at 300 °Kmax efficiency is (825 - 300)/825 = 525/825 = 64%. This power station can not possibly achieve a higher efficiency based on these temperatures. A car engine running at 400 °K delivers heat energy to the ambient 290 °K air max efficiency is (400 - 290)/400 = 110/400 = 27.5% not too far from reality

Nuclear Plant


Power plants


First modern steam engine:

James Watt, 1769 (patent), 1774 (prod.)

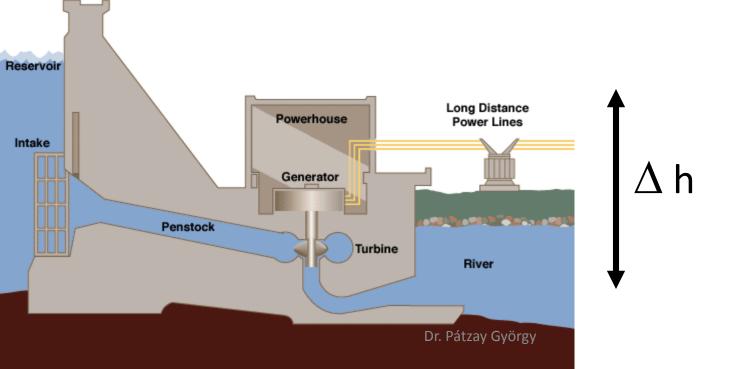
Higher efficiency than Newcomen by introducing separate condense Reduces wasted heat by not requiring heating and cooling entire cylinder

Coal power plant

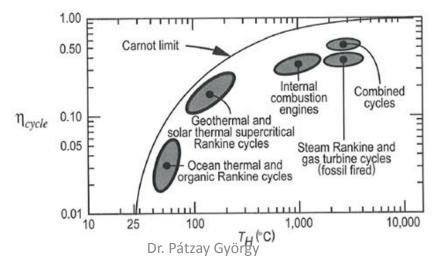
14. Coal conveyor

21. Reheater

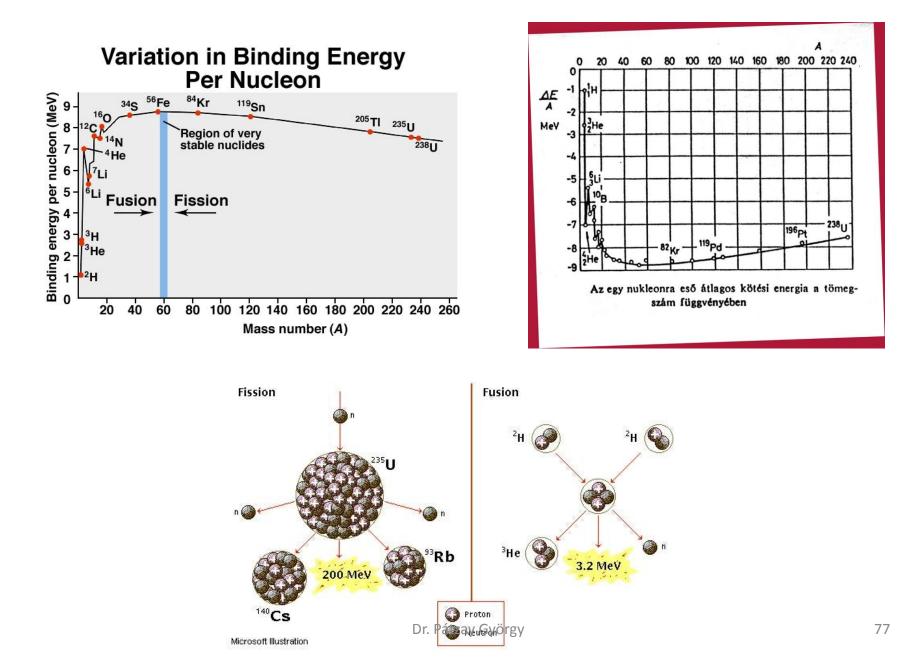
Wind power


- Power = $0.47 \times h \times D^2 \times v^3$ Watts
 - h = efficiency ~ 30% (59% theoretical maximum)
 - D = Diameter (40 meters)
 - v = wind speed (13 m/s)
 - P = 500 kW

Hydroelectricity (hydro)

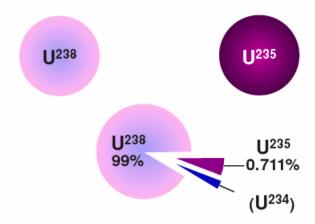

Uses difference in potential gravitational energy of water above and below dam

- $E = m \times g \times D h + m \times D v^2 / 2$
- $P = h \times r \times g \times D h \times (flow in m^3/s)$
- r is the density of water = 1000 kg $/m^3$
- Efficiency h can be close to 90%

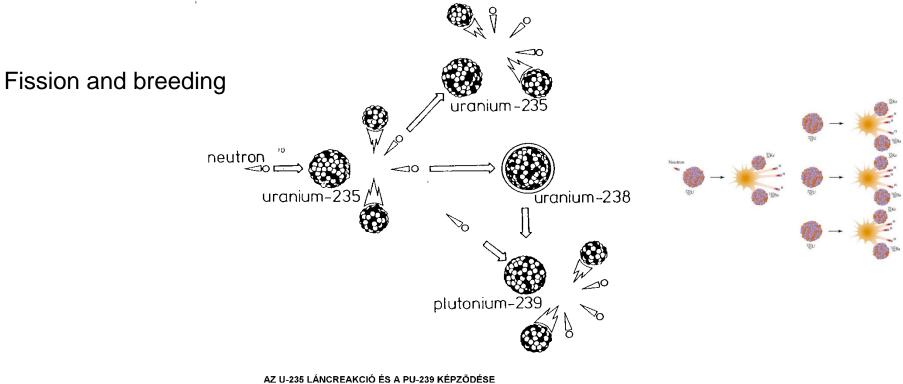


Common types of heat engines

- Rankine cycle: stationary power system (power plant for generating electricity from fossil fuels or nuclear fission), efficiency around 30%
- Brayton cycle: improvement on Rankine to reduce degradation of materials at high temperature (natural gas and oil power plants), efficiencies of 28%
- Combined Rankine-Brayton cycle: for natural gas only, efficiencies of 60%!
- Otto cycle: internal combustion engine, electric spark ignition, efficiency around 30%
- Diesel cycle: internal combustion engine, compression ignition (more efficient than Otto if compression ratio is higher), efficiency around 30%



Principles of Nuclear Power Production


Nuclear Energy

- First sustained nuclear reactor
 - Enrico Fermi
 - University of Chicago (1942)
 - 200 Watts
- Isotopes
 - naturally occurring
 - ²³⁸U 99.3%
 - ²³⁵U 0.7%

Potential fissionable-fertile nucleus

Nucleus	²³² Th	²³³ U	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁷ Np	²³⁹ Pu	²⁴⁰ Pu
Temporary nucleus	²³³ Th	²³⁴ Th	235U	236U	²³⁷ U	²³⁹ U	²³⁸ Np	²⁴⁰ Pu	²⁴¹ Pu
Neutron energy (MeV)	1,3	Т	0,4	Т	0,8	1,2	0,4	t	>0

Raw Materials

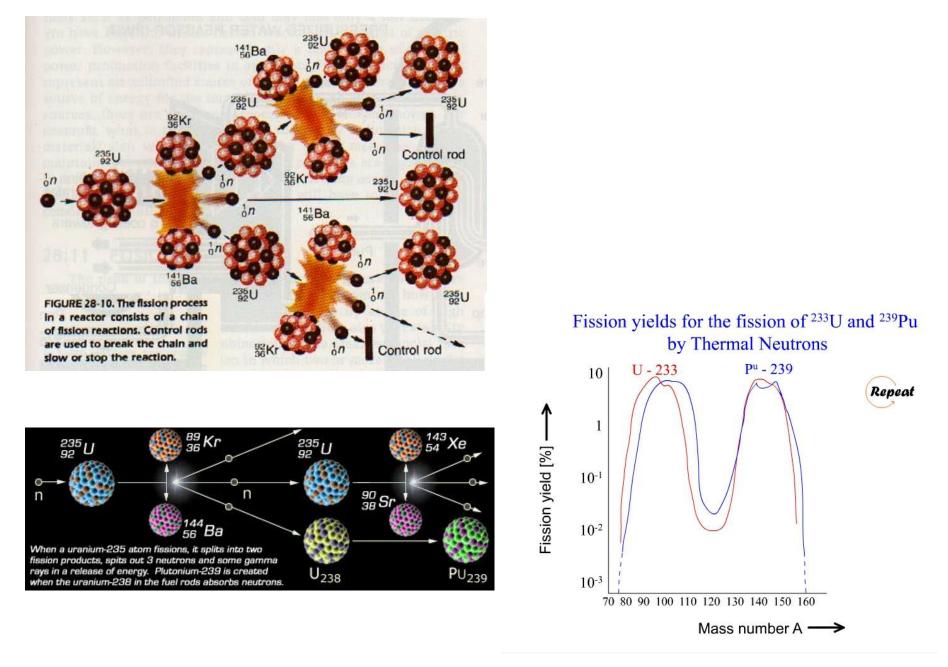
- Uranium Ore
 - $-U_{3}O_{8}$
 - yellowcake
 - deposit concentration varies
 - cost of recovery varies

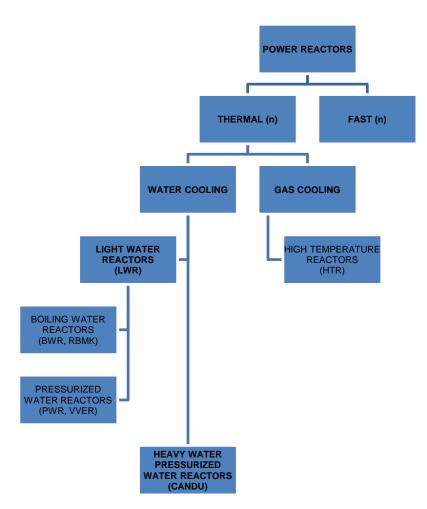
Raw Materials

- uranium resources classified according to cost

- <\$130/kg
 - $= 1.7 \times 10^{6}$ tonnes (U.S)
 - $= 5.4 \times 10^6$ tonnes (other)
- \$130/kg < \$260/kg
 - 1.3 x 10⁶ tonnes (U.S)
 - $= 12.2 \times 10^{6}$ tonnes (other)

Nuclear Reactors

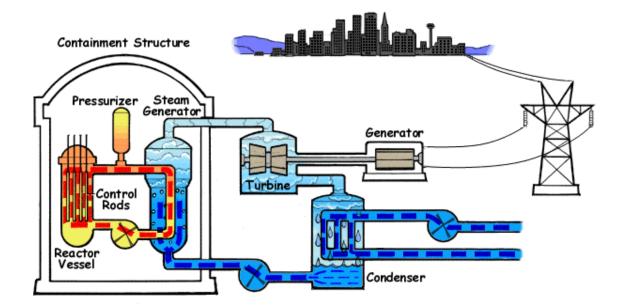

- produces heat energy (Carnot efficiency)
 - steam to drive turbine
 - turbine connected to generator
- fuel
 - 97% U-238
 - 3% U-235
 - Problem with this ratio

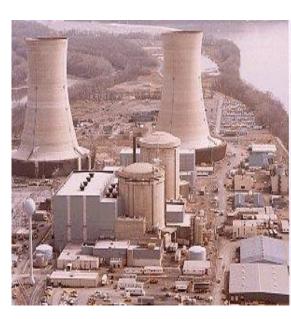

Moderators

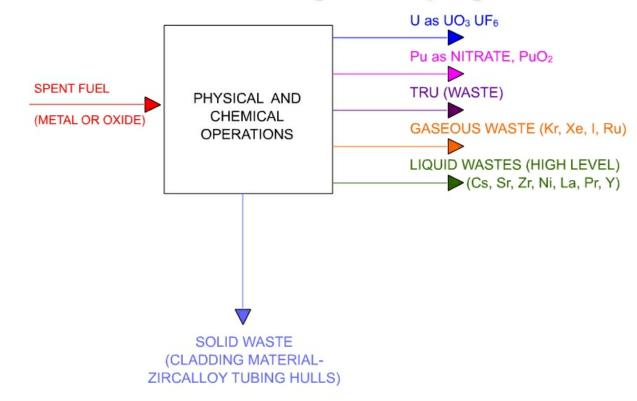
- slow down the neutrons
 - neutrons move through some material
 - water
 - graphite
 - elastic collisions transfer energy to moderator
 - neutrons slow
 - K = 0.025 eV
 - thermal neutrons

Control Rods

- help control the fission rate
 - frequently boron compound
 - readily absorbs neutrons
 - fully inserted
 - reactor shuts down
 - fully extracted
 - maximum power level
 - potential danger

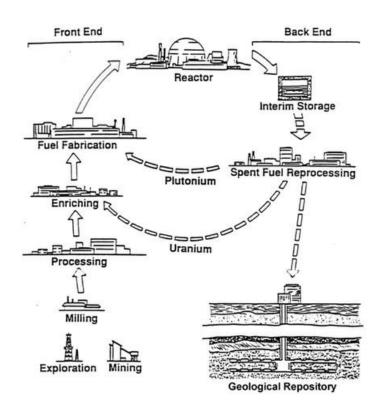


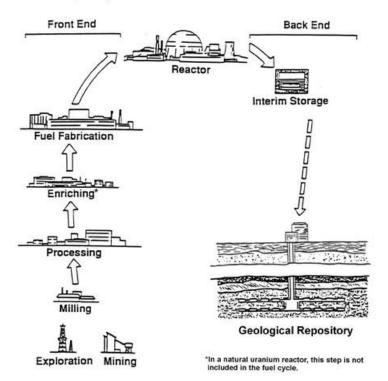

Paks NPP 440 MW_e VVER-440/213, 1 fuel rod I=2,4 m, 99%Zr 1%Nb


1 fuel element contains 126 fuel rods, in the reactor are 312 fuel elements (42 t UO₂ 3,5% 235 U)

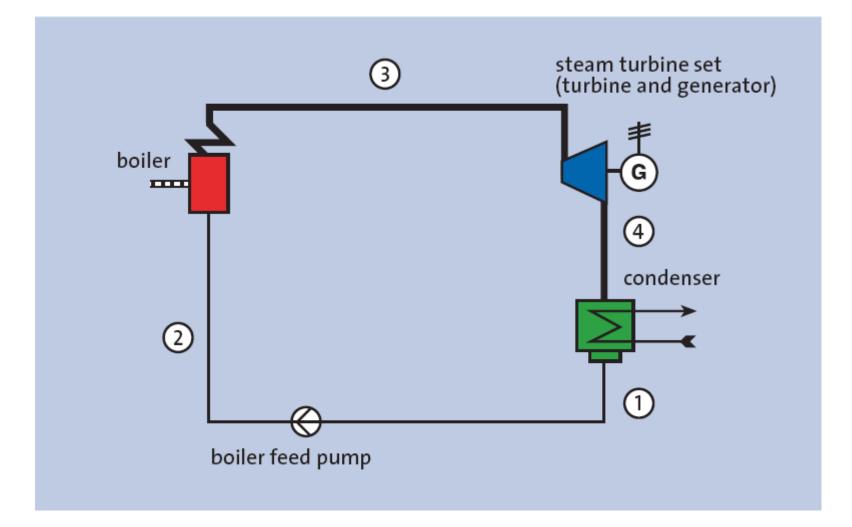
Types

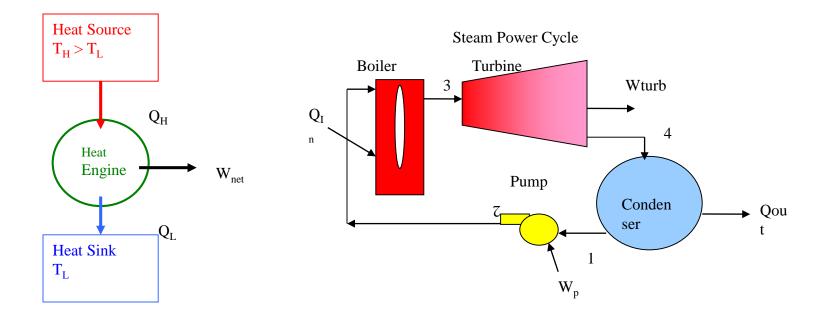
- Boiling Water Reactor (BWR)
 - water flows through core
 - reactor heats water
 - water boils
 - steam piped to turbines
- Pressurized Water Reactor (PWR)
 naval propulsion

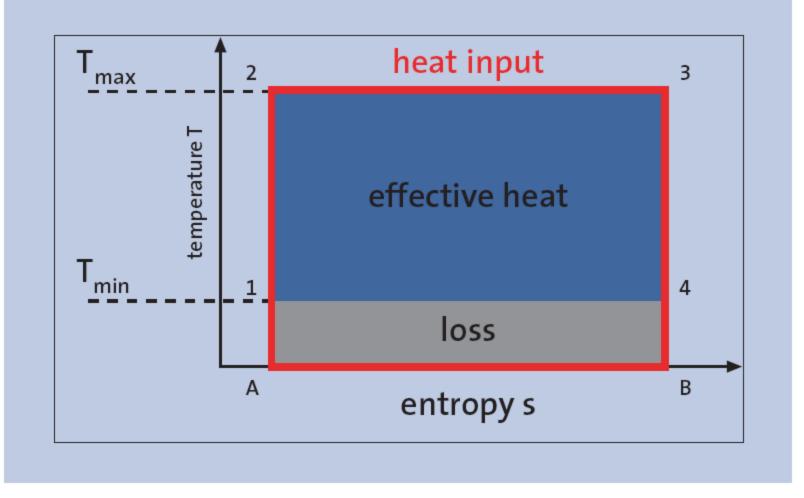



Schematic of Reprocessing Separations

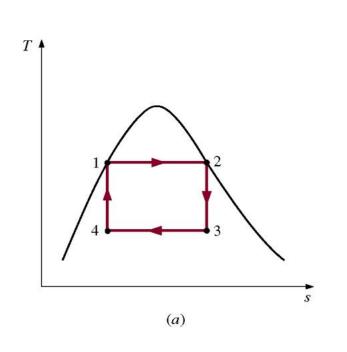
Nuclear Fuel Cycles


Full recycle of plutonium and uranium

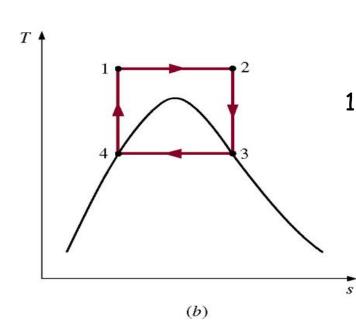

- Disposal of spent fuel
- Current policy in U.S.



Power Plants - Thermodinamics

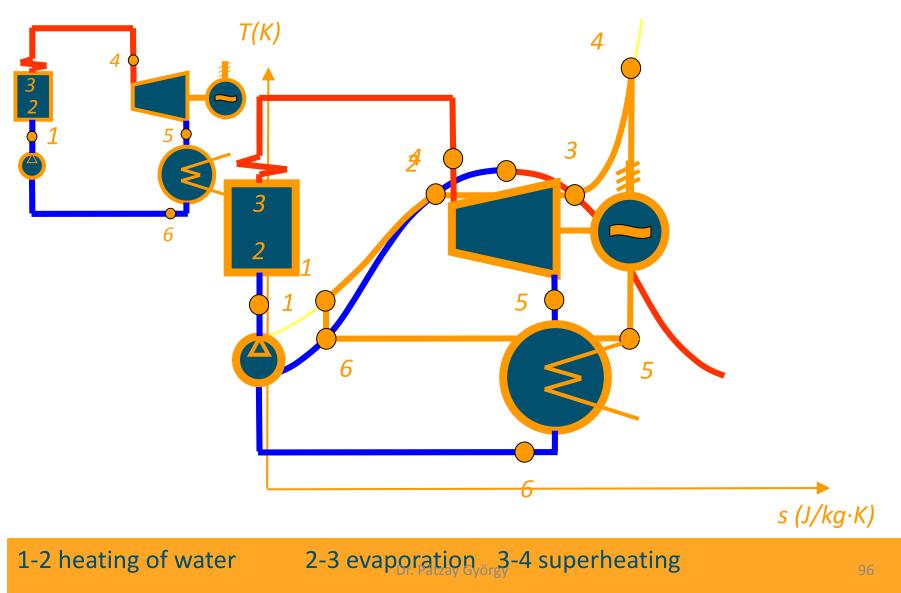


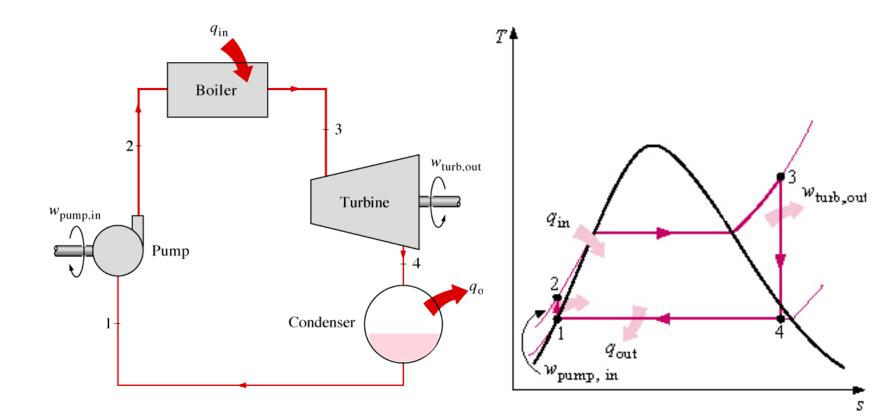
The Carnot Vapor Cycle


T-s Diagrams for a Possible Carnot Vapor Cycle

The Cycle is Not Practical because:

- Pumping process 4-1 requires the pumping of a mixture of saturated liquid and saturated vapor at state 4 and the delivery of a saturated liquid at state 1.
- 2. The turbine needs to handle steam with low quality, that is, steam with a high moisture content.

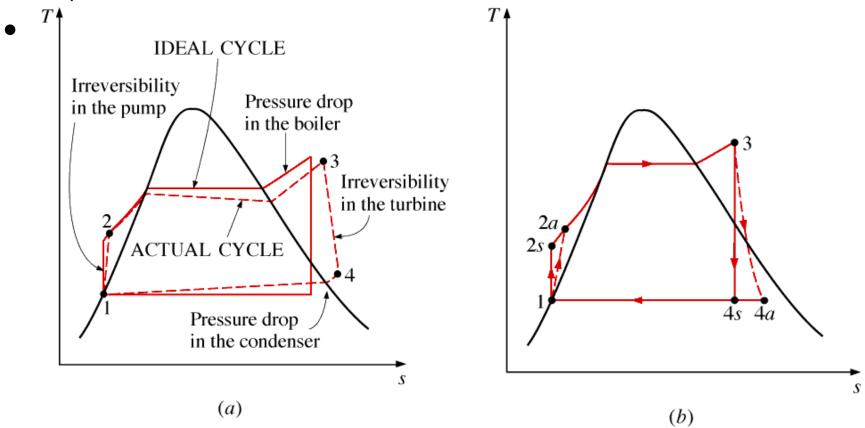

Another Possible Carnot Vapor Cycle

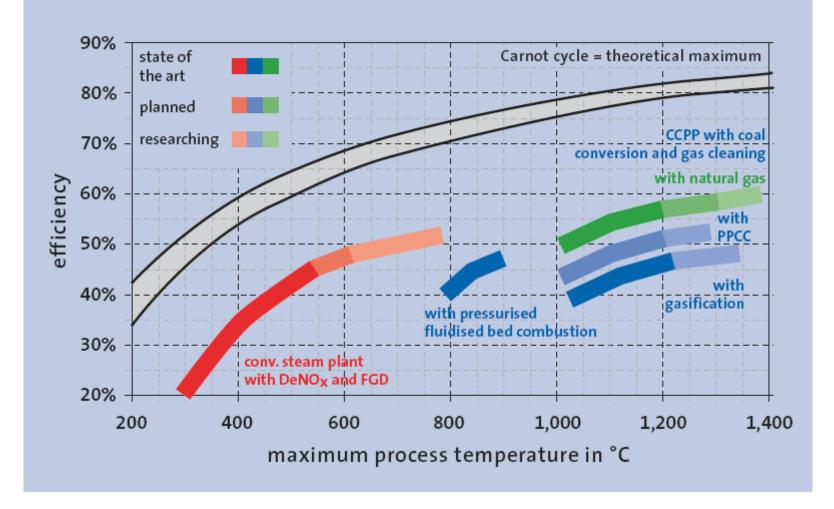

The Cycle is Not Practical because:

 To superheat the steam to take advantage of higher temperature, elaborate controls are required to keep TH constant while the steam expands and does work

The Rankine-Clausius cycle

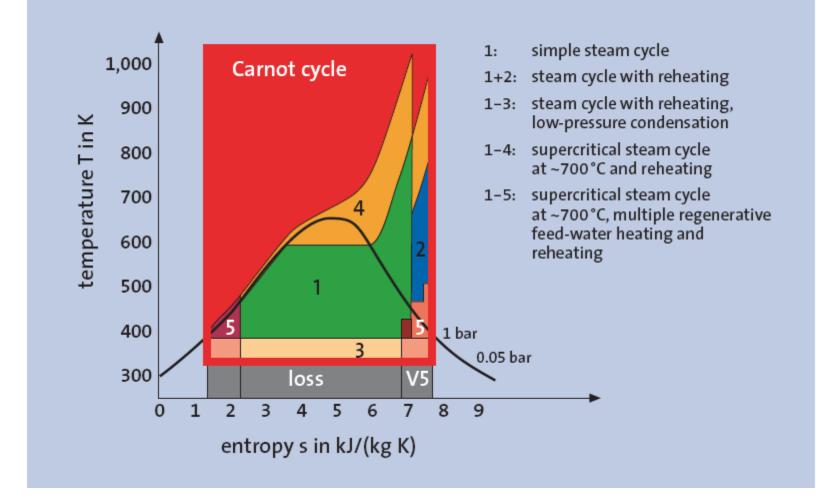
The Simple Ideal Rankine Cycle




The Simple Ideal Rankine Cycle

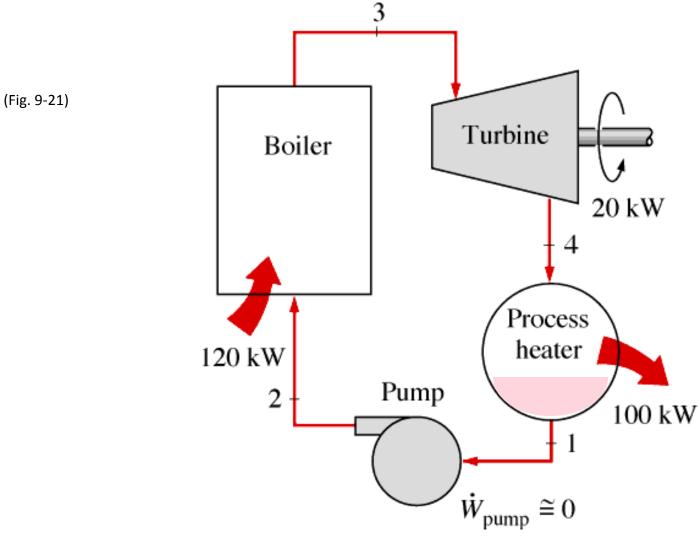
- The model cycle for vapor power cycles is the *Rankine cycle* which is composed of four internally reversible processes:
- 1. constant-pressure heat addition in a boiler
- 2. isentropic expansion in a turbine
- 3. constant-pressure heat rejection in a condenser
 - 4. isentropic compression in a pump (Steam leaves
 - the condenser as a saturated liquid at the condenser pressure)

Rankine Cycle: Actual Vapor Power Deviation and Pump and Turbine Irreversibilities

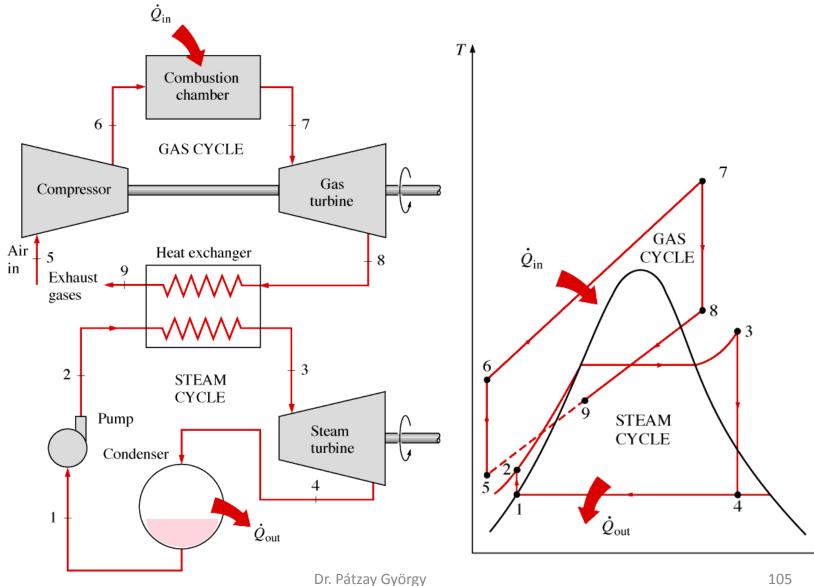

(a) Deviation of actual vapor power cycle from the ideal Rankine cycle.(b) The effect of pump and turbine irreversibilities on the ideal Rankine cycle.

Ways to Improve the Efficiency of a Simple Rankine Cycle

- <u>Superheat the vapor</u>
- Higher average temperature during heat addition
- Reduces moisture at turbine exit (we want x_4 in the above example > 85%)
- <u>Increase boiler pressure (for fixed maximum temperature)</u>
- Availability of steam is higher at higher pressures
- Increases the moisture at turbine exit
- <u>Lower condenser pressure</u>
- Less energy is lost to surroundings
- Increases the moisture at turbine exit



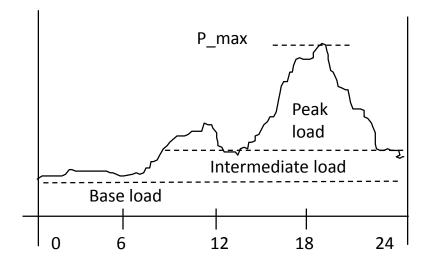
9-1


The Concept of Cogeneration

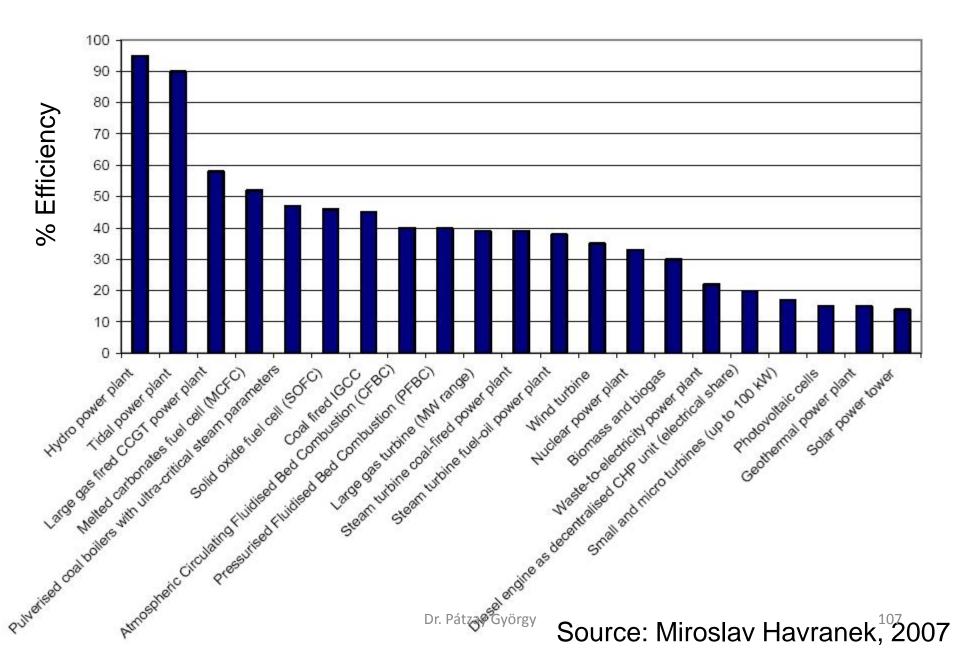
• The production of more than one useful form of energy (such as process heat and electric power) from the same energy source is called *cogeneration*. Cogeneration plants produce electric power while meeting the process heat requirements of certain industrial processes. This way, more of the energy transferred to the fluid in the boiler is utilized for a useful purpose. The faction of energy that is used for either process heat or power generation is called the *utilization factor* of the cogeneration plant.

An Ideal Cogeneration Plant

Combined Gas-Steam Power Plant


105

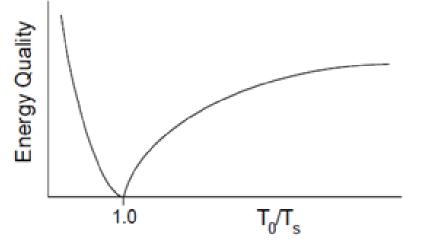
S


Electric Load

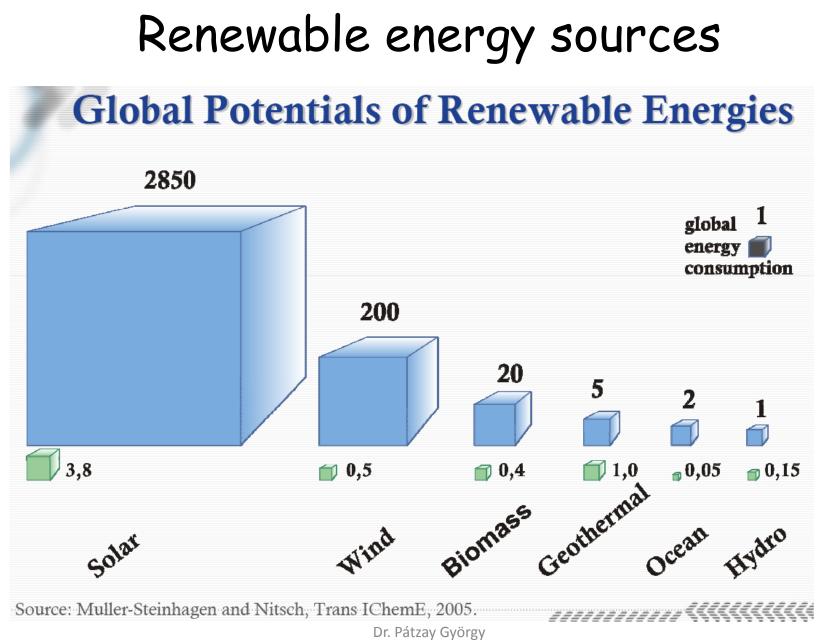
- The load changes continuously
 - Daily
 - Seasonal
- The daily maximum occurs around 4-6 PM , the minimum at night.
- The load or demand is defined as the average load (MW) for 15 minutes
- Seasonal changes: Summer load is higher than the winter load in AZ.

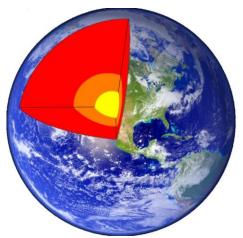
- Base load (large thermal and nuclear plants)
- Intermediate loads (medium steam and hydro)
- Peak load (gas turbine and combined cycle plants)

Power plant & fuel cell efficiencies

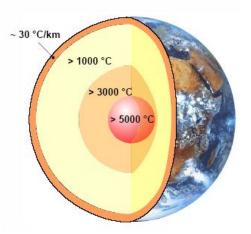


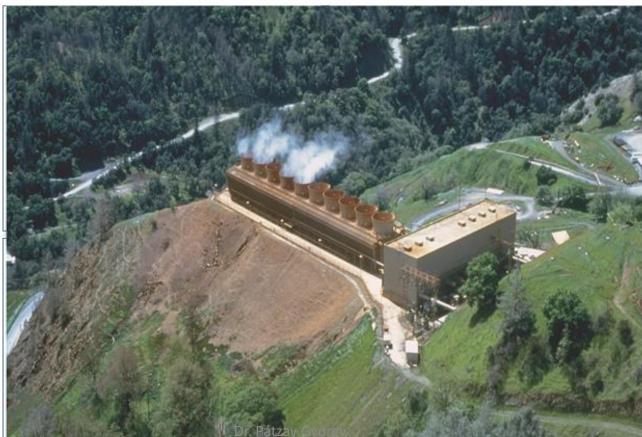
Energy - Quality - Exergy

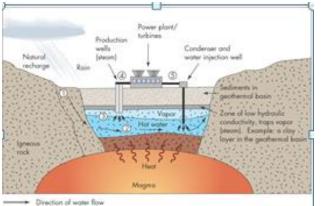

Exergy = Energy * Quality


$$Quality = \left| 1 - \frac{T_0}{T_s} \right|$$

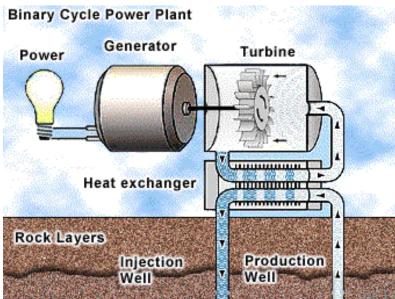
where the quality is given by

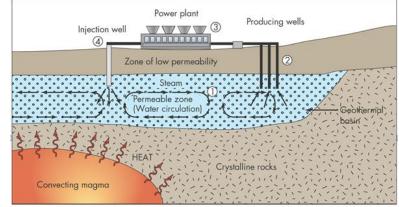



Source	Energy (J)	Exergy (J)	Quality (%)
Water at 0 °C	100	9	9
Water at 25 °C	100	0	0
Water at 80 °C	100	16	16
Natural Gas	100	99	99
Electricity or	100	100	100
Work			



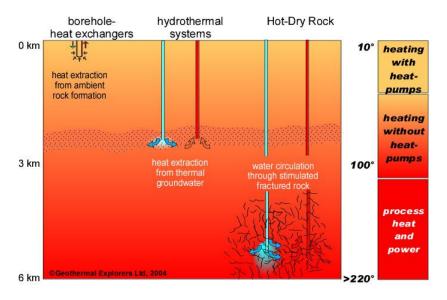
Geothermal energy



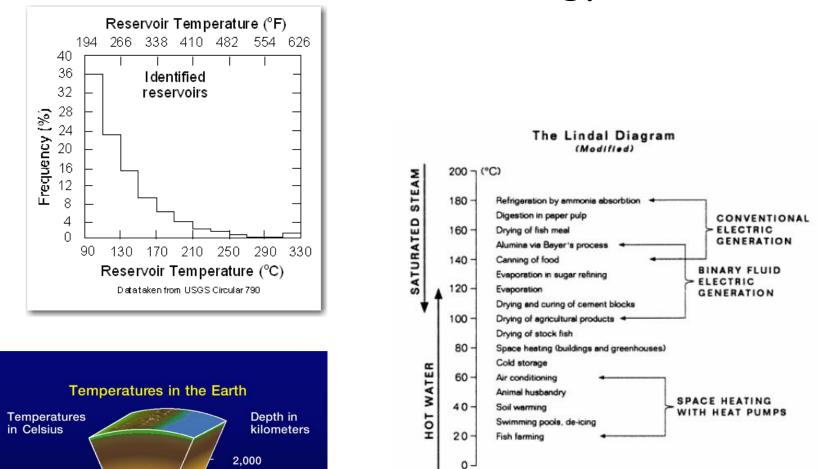

Geothermal energy

1. Natural recharge of water from rain

- 2. Hot water produced by earth processes
- 3. Steam to production well
- 4. Steam to turbines to produce electricity
- 5. Water is injected back into ground



Direction of water flow


1. Water circulating in geothermal basin

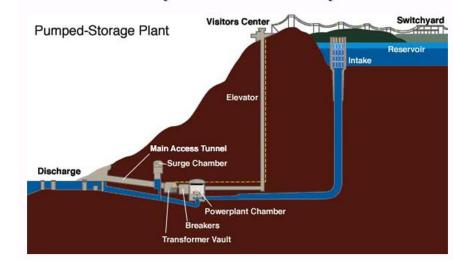
2. Wells pump out water and steam

3. Turbines in plant produce electricity

Geothermal energy

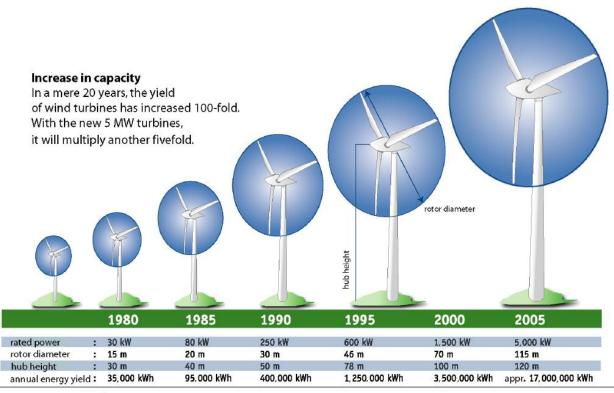
4,000

6,000


4,000°

5,000°

Water energy


Hydroelectric Dam Hydroelectric Dam Reservorr Intake Penstock Turbine River

A Hydroelectric "Battery"

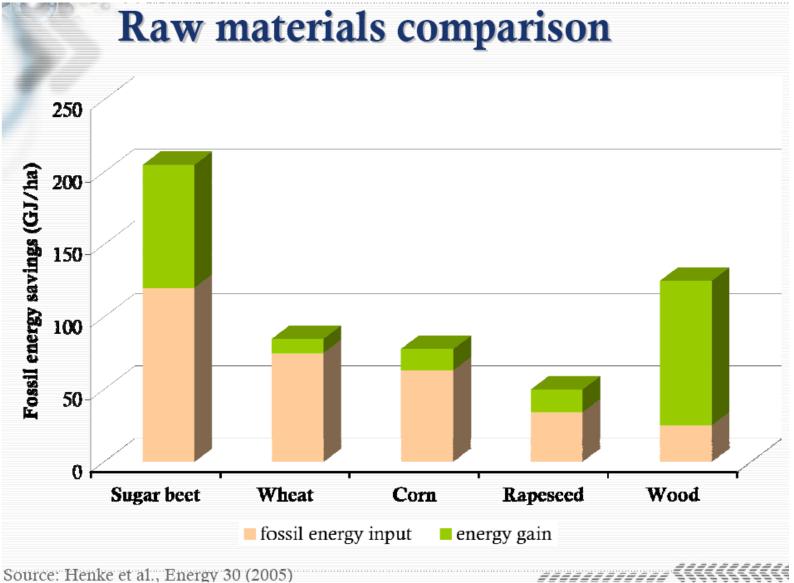
Dr. Pátzay György

Wind energy in Germany

Dinner Debate May 8th, 2007 - W. Hoffmann, Director of EREC, President of EPIA

17

What is biomass?

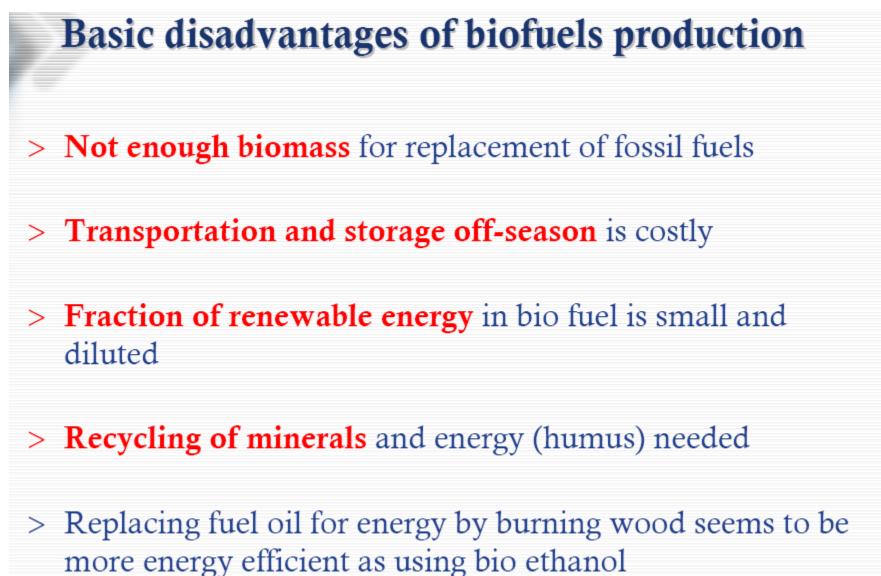

Biomass (in our case more correctly phytomass) as very diverse material has no exact chemical formula. For average biomass the mole ratio formula of main elements - C, H, and O (S and N are minor) is:

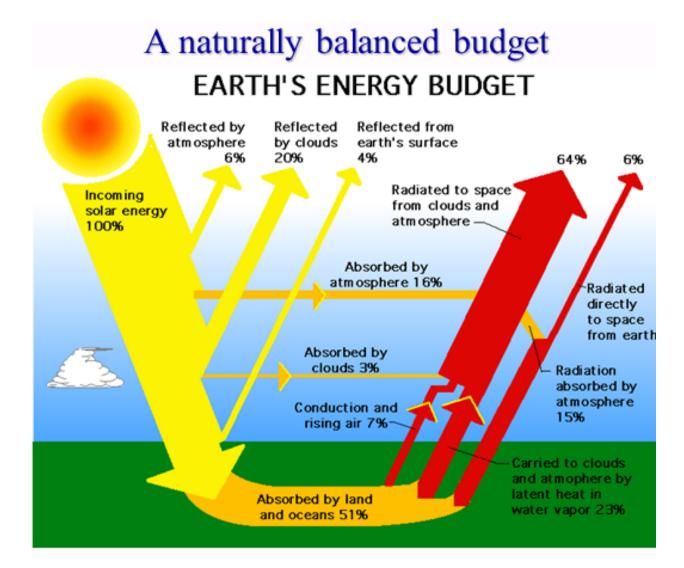
$Biomass = CH_{1.4}O_{0.6}$

This formula is workable for a large number of tree and plant species in case when the water and ash are eliminated from biomass. On the basis of this formula is possible to write approximate chemical equations for different biomass chemical conversion processes. For instance, gasification of biomass would be presented: $CH_{1.4}O_{0.6} + 0.35O_2 \rightarrow 0.4CO + 0.6H_2 + 0.4CO_2 + 0.1H_2O + 0.2C$

A biorefinery is a technologies cluster, which integrates biomass conversion into transportation fuels, power, chemicals and advanced materials within zero emissions framework.

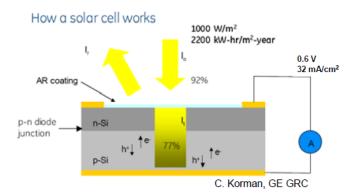
Producing 1 kg of biodiesel

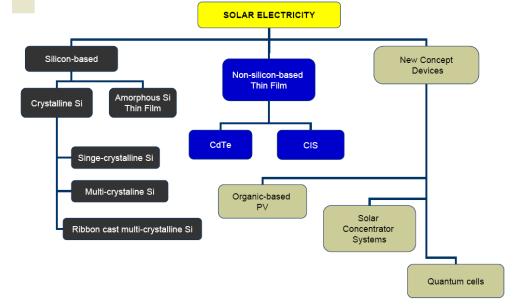

Requires


- 3,8 kg abiotic material
- 4,4 t di water
- 0,56 kg fertilizers
- 0,34 kg oil equivalent
- 14,2 m² productive surface

Releases

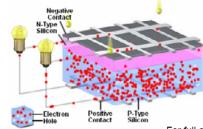
- 1071 g CO₂
- 18 g NOx
- 3 g VOC
- 7 g CO
- 0,96 kg topsoil used up
- 3,19 kg industrial residues


Energy Output/Input = 2,30



Solar PV

- Grid-connected centralized (power plants)
- Grid-connected distributed (rooftop)
- Off-grid non-domestic (power plants)
- Off-grid domestic (rooftop)


Maximum theoretical efficiency of single-junction silicon solar cell: ~29%. R.M. Swanson, Proc. 31st IEEE Photovoltaic Specialists Conference (Lake Buena Vista, FL, 2005) p. 889

How does a photovoltaic device (solar cell) work?

(1) Charge Generation: Light excites electrons, freeing them from atomic bonds and allowing them to move around the crystal.

(3) Charge Collection: Electrons deposit their energy in an external load, complete the circuit.

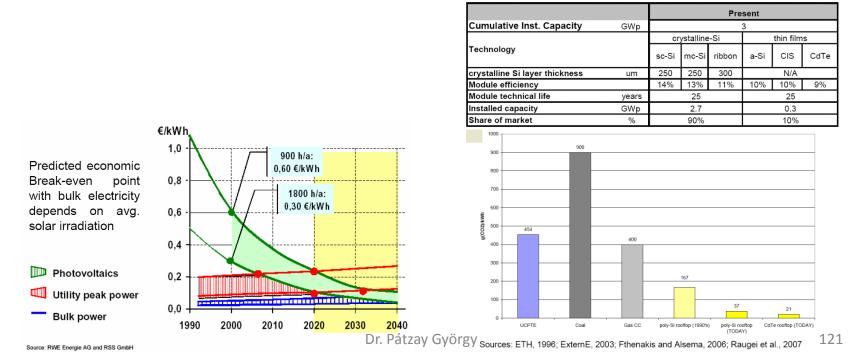
(2) Charge Separation: An electric field engineered into the material (pn junction) sweeps out electrons.

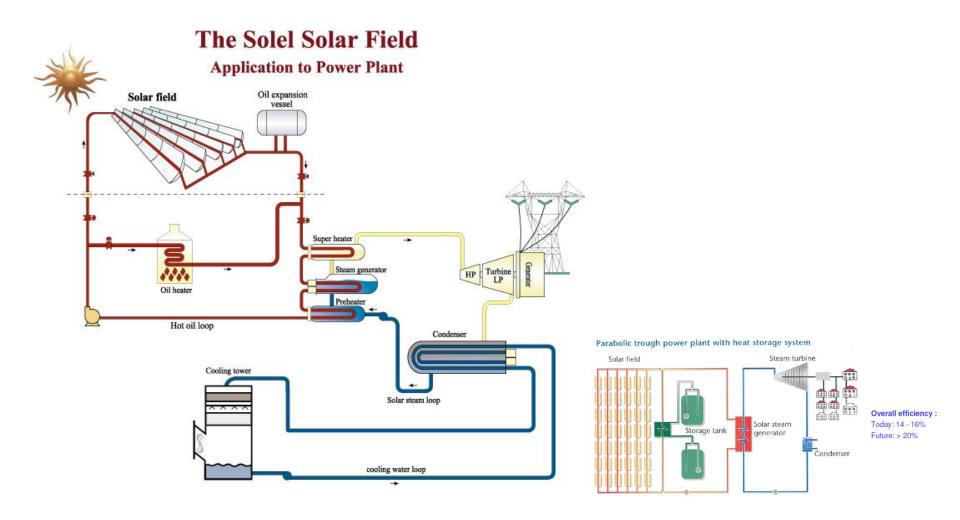
Advantages: There are <u>no moving</u> parts and <u>no pollution created at</u> the site of use (during solar cell production, that's another story).

Disadvantages: No output at night; lower output when weather unfavorable.

For full animation, see: 1000 http://micro.magnet.fsu.edu/primer/java/solarcell/

Dr. Pátzay György


Crystalline Silicon modules can be produced in three ways:


1. Re-melting of scraps of high-purity "Electronic Grade" Silicon (EGSi) and wafer cutting (sc-Si / mc-Si)

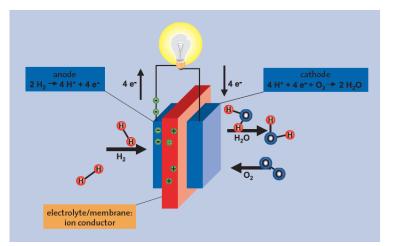
2. Direct production of medium-purity "Solar Grade" Silicon (SoG-Si) and wafer cutting (mc-Si)

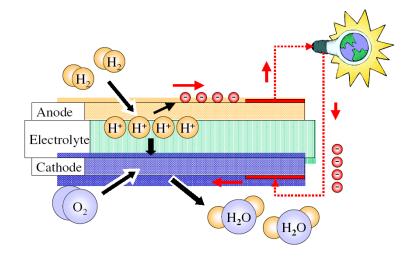
3. Direct production of medium-purity "Solar Grade" Silicon (SoG-Si) and ribbon casting (**mc-Si**)

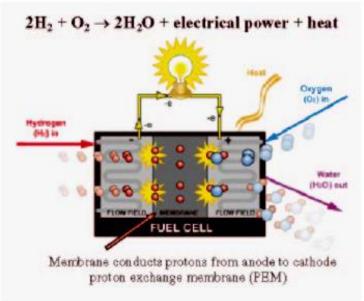
Amorphous Silicon (a-Si) modules makes use of a thin layer of hydrogenated silicon deposited on glass

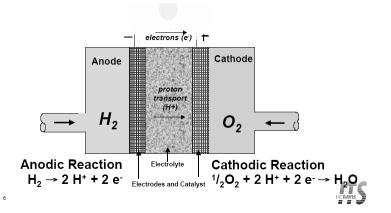
Why Hydrogen?

- Hydrogen must be produced like electricity!
- Today hydrogen is produced for the industry from fossil fuels (98 % in Germany) and electrolysis (2 % in Germany)
- Hydrogen can be produced in large central plants or in smaller distributed units
- Low carbon hydrogen can be produced from fossil resources (in future with carbon capture and storage, CCS), nuclear, renewables
- Hydrogen can be produced by photo-biological and photoelectrolysis
- processes, thermochemical water splitting, ...
- Hydrogen can be transported and stored
- Hydrogen can be used in fuel cells (some fuel cells can use hydrogencontaining fuel directly), in internal combustion engines, in gas turbines
- Hydrogen can replace oil and gas and contribute to energy security and independence from imports


Why Fuel Cells?


- The use of fuel cells contributes to energy efficiency (and: electricity is produced and the right amount of heat at the right temperature regime)
- Residential: fuel cells replace oil/gas central heating systems and reduce amount of electricity taken from the grid
- Stationary: fuel cells replace CHP with fossil fuels
- Transport: fuel cells replace internal combustion Why Fuel Cells?
- engines running on gasoline and diesel

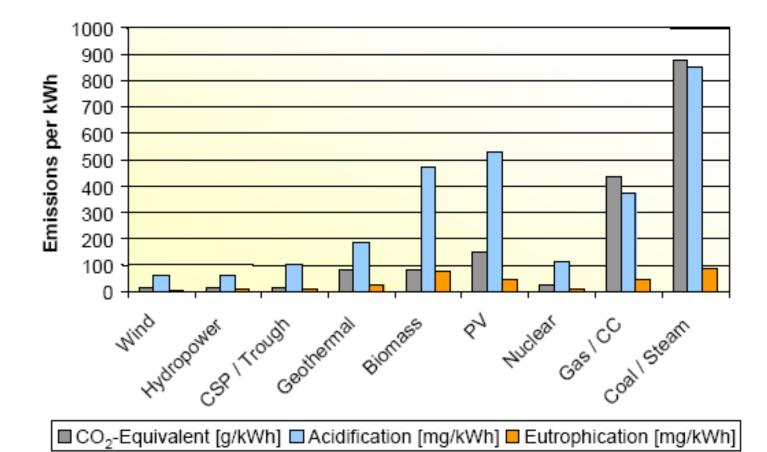

Why Hydrogen and Fuel Cells?


- Reducing the impact on local and global environment
- Energy security
- Diversification of energy supply
- Creation of new jobs
- Industry opportunities

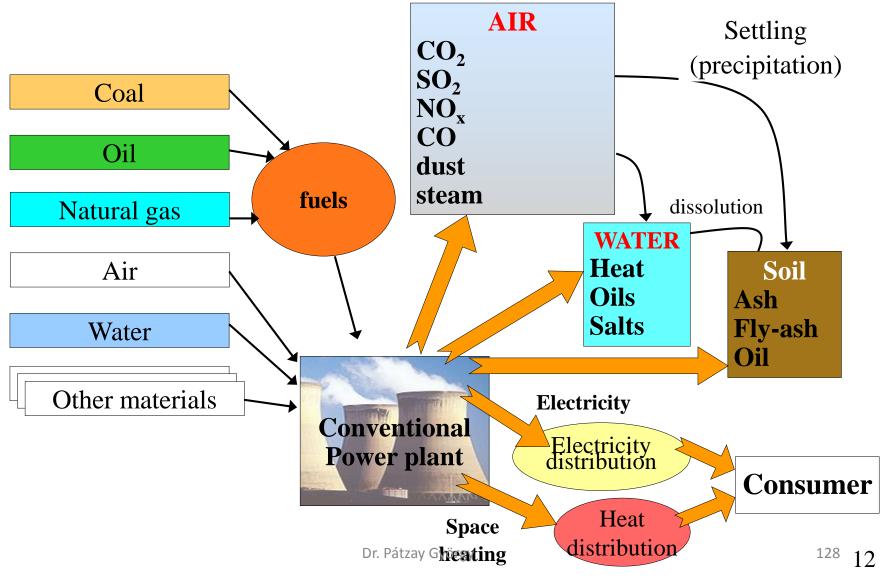
Fuel cells

Dr. Pátzay György

> Improving efficiency of final energy use:

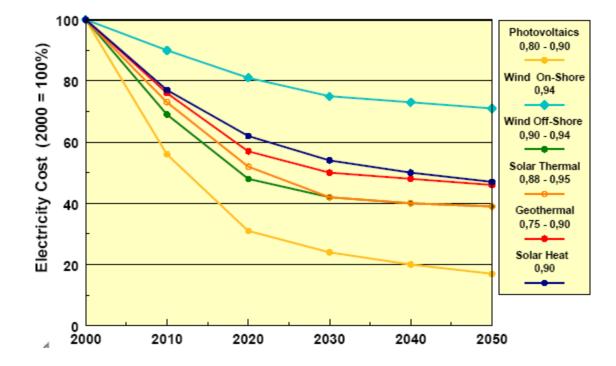

- > Solar passive buildings, 190 \rightarrow 15 kW h/m²
- > Industry low energy (bio)processes, process integration, CHP, poly-generation, heat pumping
- > Transport efficiency cars, light trucks, high speed trains
- > New materials, recycling, reuse, substitution
- > Energy conversion (increased efficiency), e.g.:
 - > Cogeneration engine + heat pump
 - > gas turbine / steam turbine comb. cycle + heat pump
 - > gas turbine / steam turbine cogeneration + heat pump
- > Human behaviour, marketing, R&D planning

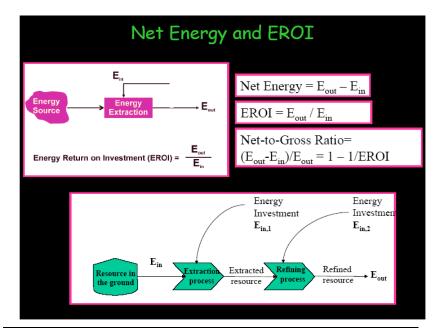
Source: Spreng D, Energy Policy 33 (2005)

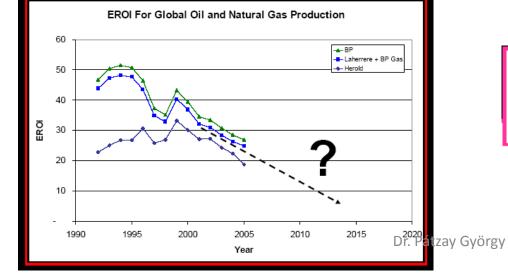


ENVIRONMENTAL EFFECTS OF POWER PLANTS

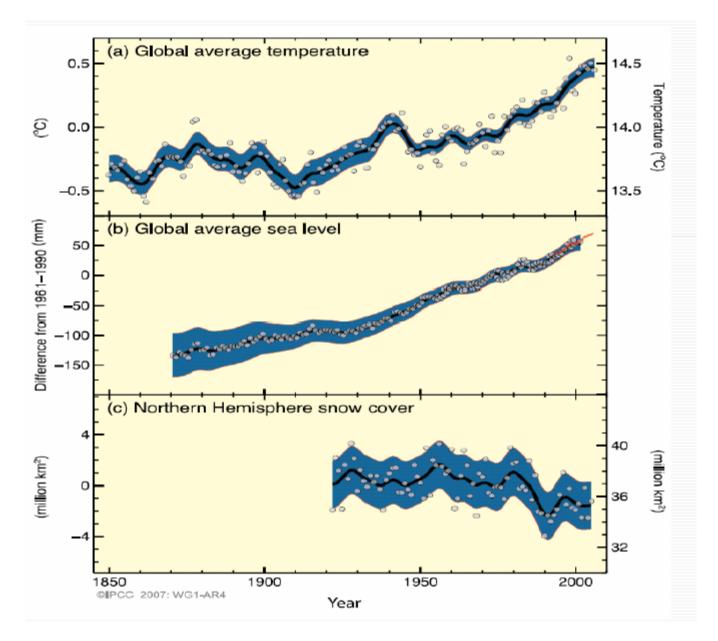
Life cycle emissions from different electricity generation technologies

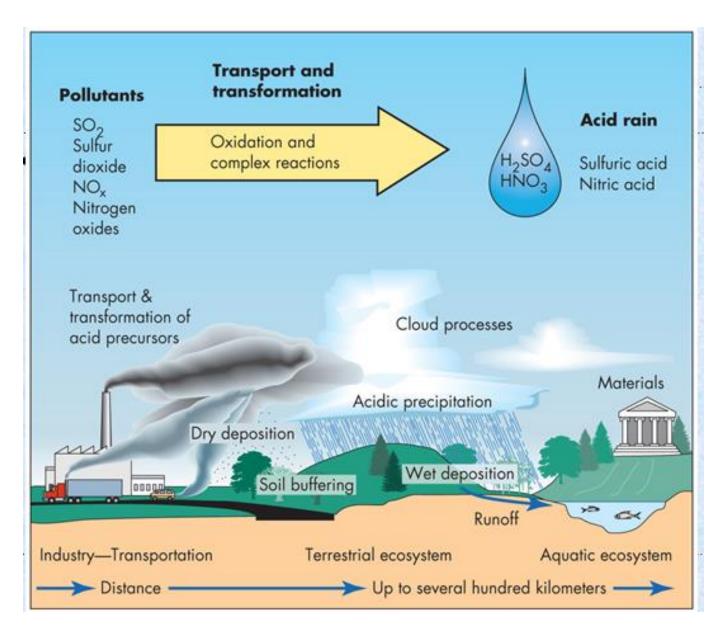



ENVIRONMENTAL EFFECTS OF CONVENTIONAL POWER PLANTS


0

Cost development of renewable energy technologies

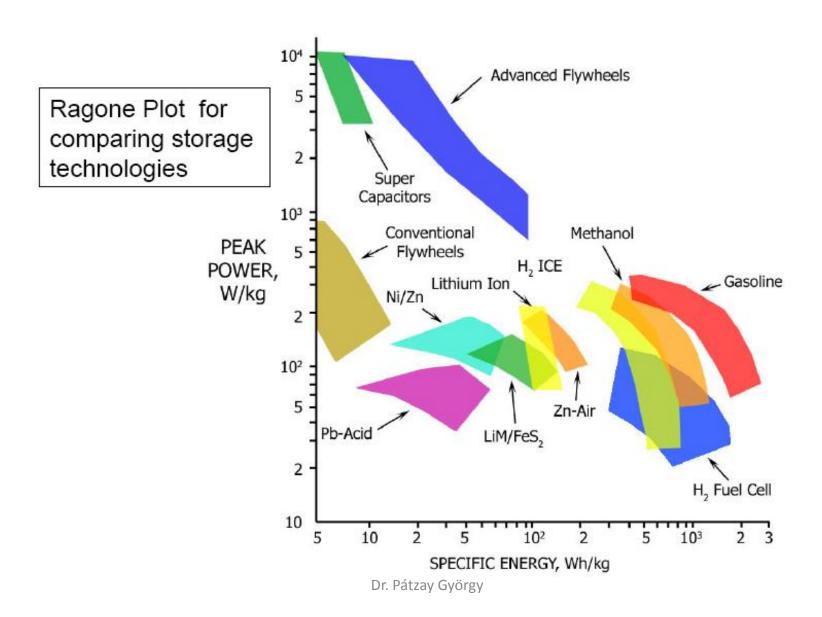

EROI for global oil and natural gas production projected linearly (Hall et al., 2006)



EROI of selected fossil fuels and energy carriers					
	Energy content (MJ/unit)	Energy investment (MJ/unit)	EROI		
Mined					
Coal (kg)	28.01	1.39	20.15		
Natural gas (kg)	57.00	3.35	17.01		
Refined					
Natural gas (kg)	57.00	8.14	7.00		
Coke (kg)	25.42	3.93	6.47		
LPG (propane) (kg)	50.00	8.89	5.62		
LPG (butane) (kg)	49.30	8.89	5.55		
Gasoline (kg)	46.12	8.89	5.19		
Gas oil (oil distillate) (kg)	45.21	8.89	5.09		
Gas oil (oil distillate) (kg)	45.21	8.89	5.09		
Diesel (kg)	44.84	8.89	5.04		
Light fuel oil (kg)	43.20	8.89	4.86		
Medium Fuel oil (kg)	42.85	8.89	4.82		
Heavy fuel oil (kg)	42.60	8.89	4.79		
Manufactured gas (kg)	57.00	22.27	2.56		
Converted (energy conversion losses accounted for as investment)					
Electricity (kwh)	3.60	11.40	0.32		

biofuels

EROI = $1.5 \div 2.5$ Net Energy= $0.5 \div 1.5$ Net-to-Gross ratio= $0.30 \div 0.60$



Basic question \rightarrow Energy storage

Energy storage in general

	-		
Mode	Primary Energy Type	Characteristic Energy Density kJ/kg	Application Sector
Pumped Hydropower	Potential	1 (100m head)	Electric
Compressed Air Energy Storage	Potential	15,000 in kJ/m ³	Electric
Flywheels	Kinchi	30-360	Transport
Thermal	Enthalpy (sensible + latent)	Water (100-40°C) – 250 Rock (250-50°C) – 180 Salt (latent) – 300	Buildings
Fossil Fuels	Reaction Enthalpy	Oil – 42,000 Coal – 32,000	Transport, Electric, Industrial, Buildings
Biomass	Reaction Enthalpy	Drywood – 15,000	Transport, Electric, Industrial, Building
Batteries	Electrochemical	Lead acid – 60-180 Nickel Metal hydride – 370 Li-ion – 400-600 Li-pdgmer ~ 1,400	Transport, Buildings
Superconducting Magnetic Energy Storage (SMES)	Electromagnetic	100 – 10,000	Electric
Supercapacitors	Electrostatic	18 – 36	Transport

\rightarrow Energy storage

